

June 15, 2015

Mr. David Foster, Chief Utilities Division Tennessee Regulatory Authority 502 Deaderick Street, 4th Floor Nashville, TN 37243

RE: Docket # 15-00025 – Petition of Tennessee Wastewater Systems, Inc. to Amend its Certificate of Convenience and Necessity

Dear Mr. Foster:

Tennessee Wastewater Systems, Inc. provides the following information per your request dated May 15, 2015.

1. Please provide financial statements for year-end December 31, 2014 inclusive of balance sheet, income statement and statement of cash flow for Tennessee Wastewater Systems, Inc.

Response: See attached (Confidential)

2. Provide information from Williamson County showing that the Map and Parcels listed for transfer of the treatment system to TWSI are now deeded/registered to the Sanfords or Nolensville 162, LLC.

Response: See attached

3. Provide a breakdown of the operation costs provided in the build-out schedule of the Petition and explain how the costs are determined. Please explain the basis and underlying assumptions for the cost estimates.

Response: See attached

4. Provide the date the SOP application was submitted to TDEC for the Nolensville-Dove Lake Treatment Facility.

Response: The Engineer (SEC, Inc.) has not submitted the application yet.

5. Provide a copy of the *Notice of Complete Application* for the Nolensville-Dove Lake Treatment Facility and assigned SOP number as reported by TDEC.

Response: TDEC has not issued a Notice of Complete Application for this project.

6. Please provide a copy of the Detailed Soils Investigation Report ("DSIR") and the Design Development Report ("DDR") that will be submitted to Williamson County for approval of the wastewater system engineering and design.

Response: See attached.

7. Please explain the roles of Alan Kent, Pete Ferrari and Himanshu Amin to Nolensville 162, LLC. (Developer).

Response: Alan Kent is the equity provider and the sponsor of the debt.

Pete Ferrari is the Developer and Manager

Himanshu Amin is Alan Kent's Controller

8. Provide a map of the exact area being requested showing street names, etc. Provide an actual blueprint to scale showing as-built drawings of the location of all components of the wastewater system and the "proposed phases" of the phased in collection system.

Response: See DDR/DSIR. As-Built drawings cannot be provided. The system has not been designed, or constructed.

9. TWSI provided in the Petition that the subdivision is inclusive of 222 acres. Will The Enclave of Dove Lake Subdivision encompass all of the 222 acres or will there be other subdivisions built within the 222 acres?

Response: The Enclave of Dave Lake is the only development proposed to encompass the 222 acres.

10. Provide detailed construction cost estimates for all of the facilities and improvements to the 222 acres of land in order to construct the treatment, disposal and collection system. Provide a comparison of the actual construction costs for similar systems. Submit a copy of the same cost estimates signed by the Design Engineer that includes the STEP System the treatment and collection facilities and drip dispersal, as will be submitted to Williamson County.

Response: This project is in very preliminary stage and only assumed construction cost estimates have been prepared. The Developer's engineer has

prepared a detailed construction cost estimate in the DDR/DSIR. No recent similar systems are available for comparison.

11. Provide details of what is involved in the installations of phased collection systems installations.

Response: The following would be considered typical in Williamson County.

- a. Collection system phase would be designed and approved by TDEC
- b. Preliminary plat would be presented to the County
- c. Planning Commission would approve Preliminary plat with conditions
- d. Developer would request bids to have the collection system installed
- e. Developer would select an installation Contractor
- f. Contractor would conduct a Pre-con meeting with TWSI inspectors
- g. TWSI would inspect installation
- h. TWSI and installer would perform pressure testing of installed lines
- i. Deficiencies would be corrected, if necessary.
- j. TWSI would accept and certify the system installations
- k. Planning Commission would approve final plat
- 1. Developer would post a bond for installed system with the County
- m. TWSI would sign the final plat as Utility provider
- n. Developer would record the final plat
 - This should not be considered Typical for every County in TN.
- 12. Will the Enclave of Dove Lake subdivision be built in phases? If so, describe each phase and the estimated time of completion for each phase.

Response: There will be 3 phases to the development. Estimated timeline of the phases will be approximately 4 years. Each phase can't be projected as it is dependent on the purchase of the lots/homes for each phase.

13. Will all of the 165 houses referred to in the Petition be built in the first phase?

Response: No. There will be 3 phases.

14. Will the "phased collection system installations" be complete when TWSI takes over the system from the Developer? If not, provide timeline of phases.

Response: Each phase collection lines will be completed for that phase prior to recording of the plat. The Developer must post a bond with Williamson County. That bond is held on TWSI's behalf according to Williamson County regulations.

TWSI does not sign the plat or provide service until the collections lines have passed TWSI's requirements.

15. Provide cost estimates for each phase (section) of the "phased in collection system installations."

Response: Phase I – 66 lots * 100ft./lot * \$10.00/LF = \$66,000.00 Phase II – 65 lots * 100ft/lot * \$10.00/LF = \$65,000.00 Phase III – 33 lots * 100ft/lot * \$10.00/LF = \$33,000.00

16. In a previous Docket (Docket No. 14-00062), TWSI stated that a recent reorganization caused certain maintenance personnel previously employed by Adenus Operations to now become full time employees of TWSI. Will an employee of TWSI be performing the operation and maintenance duties at Enclave of Dove Lake? Name all of the operation and maintenance personnel on TWSI's payroll that hold certificates to operate a wastewater system and name the certified operator specifically assigned to the Enclave of Dove Lake.

Response: An employee of TWSI will be assigned to that facility to perform the operation and maintenance for the treatment and collection system. The following personnel are employees of TWSI along with a list of employees of TWSI's affiliated companies who are available to assist TWSI employees:

TWSI Personnel

John Czahoroski, BNS Certification, #15064
Tony Smith, BNS Certification, #15279
Steve Hanson, BNS & Collections I Certification, #14079
Jeremy Stewart, Not yet eligible to take exams for certification
Tracy Nichols, BNS & Collections I & II Certification, #15046
Jesse Hutcherson, BNS & Collections I& II Certification, #15047
Thomas Smithson, BNS Certification, #15507

Adenus Operations LLC Personnel Larry Barnes, BNS & Collections I Certification, #3542 Brian Carter, BNS & Collections I Certification, #3541 Roy Denney, Grade 4 Operator, #14847 Jennifer Young, Grade 4 Operator, #9166 Charles Hyatt, BNS & Collections I Certification, #3540, Licensed General Contractor, #00058778

Jesse Hutcherson will be assigned as the certified operator for Enclave of Dove Lake.

17. Provide a copy of the operator certification for the person that will be operating and providing inspection reports for the wastewater system at The Enclave of Dove Lake Subdivision.

Response: See attached

18. Provide a copy of the same *preliminary plat* as will be submitted to Williamson County for the Enclave at Dove Lake.

Response: Only a concept plan has been prepared for this project. It is included in the DDR/DSIR. A preliminary plat will be presented to Williamson County once the SOP has been issued by TDEC and the TRA has granted a CCN to the Utility provider.

- 19. Please explain how customer service needs will be met by providing the following:
 - a. Phone number for repair and maintenance (customer service).
 - b. Address for written communication for repair and maintenance
 - c. Name, address and phone number of area certified operator responsible for and knowledgeable about provider operations
 - d. Provide a copy of an actual Tennessee Wastewater Services, Inc. bill, showing all specifics of a bill pursuant to TRA Rules and Regulations that the Enclave of Dove Lake customers will receive. (Include a copy of both monthly bill and annual bill.)

Response: TWSI information: phone number, address, maintenance hotline is on the monthly bill. In addition to monthly bill, this information can also be found on TWSI website. At each treatment plant location or drip field, a 2x2 foot sign is posted with TWSI information and also TDEC's information. All maintenance calls are dispatched from the Smyrna office. Item (d) information is attached.

20. Identify all complaints filed with state and federal agencies involving your company or affiliated entities. Identify the nature of the complaint, which governmental agency or office received the complaint and how the complaint was resolved. Provide a separate list with any unresolved complaints.

Response: TWSI is not aware of any outstanding complaints filed outside of the TRA complaints. TRA complaints would be on file along with TWSI's responses to those complaints. TDEC and local health department complaints are not sent to TWSI. Personnel from those agencies along with TWSI personnel visit the site of the complaint to review the claim. Any issues or further actions by TWSI are

resolved at that point. All customer complaints / maintenance issues are logged into a work order database maintained by Adenus and dispatched to the respective maintenance personnel. That maintenance ticket is then "closed out" by the maintenance personnel once the issue is resolved.

21. Provide a copy of the "Subscription Service Contract" and/or any other contract the customers at the Enclave of Dove Lake will be required to sign to tap on and/or to be serviced by the waste water system.

Response: See attached.

If you have any further questions, or need any additional information, please feel free to contact me.

Sincerely,

Charles Hyatt, President

an R. Ho

Tennessee Wastewater Systems, Inc.

State of Tennessee

Department of Environment and Conservation

Bater and Bastewater Operator Certification Board Issues This

Certificate of Competency Jesse J. Hutcherson

has satisfactorily fulfilled the requirements set forth by the

Water and Wastewater Operator Certification Board

Biological/Natural Systems

In Witness Whereof, we have subscribed our names and affixed our Seal

Certificate No. 15047 Dated 11/7/2013

Recommended alan a Crangeral

Approved Kith

4 64 820

State of Tennessee

Department of Environment and Conservation

Water and Wastewater Operator Certification Board

Certificate of Competency Jesse J. Hutcherson

has satisfactority fulfilled the requirements set forth by the

Water and Wastewater Operator Certification Board and is therefore, by these presents, entitled to recognition as a

Grade I Wastewater Collection System Operator

In Witness Whereof, we have subscribed our names and affixed our Seal

Certificate No. 15047 Dated 11/7/2014

Approved Res

Allast Jan Ble Rallo

Commissioner

Berrie

(99 HO)(

Account No.

Tennessee Wastewater Systems, Inc. 851 Aviation Parkway Smyrna, TN 37167 888-3-ADENUS

Maintenance Hotline: 877-669-0786

Location No.

From Date 04/30/2015 Through Date Usage Amount

Previous Balance 45.63 Payment Received (45.63) SEWER 44.15 **Bonding** 1.48 **Total Charges Due** 45,63

ast Due Amount	Current Charges	Net Amount
		\$ 45.63
Due Date	After Due Date	
NALES: 20.10	9 41.31	\$ 40.03

Location No. Account No. 000000001257 000000TNBWB0058 Aller Due Date Due Date Net Amount 06/15/2015 47.91 45.63

245 HOPE COVE Service Address View account history. Update your account info. Even pay your bill, all online. Visit adenus.com to learn how

RETURN STUB WITH PAYMENT TO: Tennessee Wastewater Systems, Inc. 851 Aviation Parkway Smyrna, TN 37167

PRESORTED FIRST CLASS MAIL U.S. POSTAGE PAID SMYRNA. TN Permit No. 26

ADDRESS SERVICE REQUESTED

851 Aviation Parkway Smyrna, TN 37167

Bill To

Tennessee Wastewater Systems, Inc.

Office: (615) 220-7200

Fax: (615) 220-7207

Empty Lot Fee Statement

Date	Account #
12/15/2014	00000000138
Total Due	Total Due After 1/15/2015
\$120.00	\$126.00

Description	Previous Balance	Payments	Adjustments	Current Charges	Total Due	Total Due After 1/15/2015
OAK POINTE 000000TNOPO0005	120.00	-120.00	0.00	120.00	120.00	126.00
Please remit payment with st	ub			Total Due	\$120.00	\$126.00

Williamson County Real Estate Assessment Data

New Search

County Number: 094 Current Tax Year: 2015

Property Owner and Mailing Address

SANFORD GARY

7620 NOLENSVILLE ROAD NOLENSVILLE, TN 37135

Property Location

Address: NOLENSVILLE RD

Di: 17

Map: 083 Group:

Ctrl Map: 083

Parcel: 01300 PI: SI: 000

Value Information

Valuation Year: 2015

Land Market Value: \$315,700 Land Use Value: \$47,200

\$360,200

Improvement Value: \$44,500

Improvement 644

Value:

\$44,500

Total Market

Appraisal:

Total Use Appraisal:

\$91,700

Assessment %:

Green Belt

25%

Assessment:

\$22,925

General Information

Lot Dimensions: 0.00×0.00

Legal Acreage: 0.0000

Class:

111 Agricultural

City:

000 Unincorporated

Building Information

Building: 1 (R01) Year built: 1992 Effective Year Built: 1992

 Floor
 Base Area
 Finished Area

 1.0
 1014
 1014

 2.0
 1173
 1173

Features

Feature Type Description

ATTGAR 840 DETGAR 943 SF

Sales information

There is no sales information on record for this property.

Recorded Sales

There are no recorded sales available.

The Property Assessor's Office of Williamson County, TN presents this web site as a service to the public for informational purposes only. While we seek to present accurate, reliable, complete, current and useful information and products on this site, we do not guarantee or warrant the accuracy, reliability, completeness, or usefulness of the information at this site or at other sites to which we link. Therefore, any use of or reliance upon information or products from this site or a linked site is at the user's risk.

Williamson County Real Estate Assessment Data

New Search

County Number: 094 Current Tax Year: 2015

Property Owner and Mailing Address

SANFORD PHILLIP T

7612 NOLENSVILLE RD

NOLENSVILLE, TN 37135

Property Location

Address: 7612 NOLENSVILLE RD

Di: 17

Map: 083 Group:

Ctrl Map: 083

Parcel: 01302 PI: SI: 000

Value Information

Valuation Year: 20

2015

Land Market Value: \$283,400 Land Use Value: \$42,700

Improvement Value: \$37,600

Improvement Value:

\$37,600

Total Market

Appraisal:

\$321,000

Total Use Appraisal:

\$80,300

Assessment %:

Green Belt 25%

2.

Assessment:

\$20,075

General Information

Lot Dimensions: 0.00 x 0.00

Legal Acreage: 27.5100

Class:

111 Agricultural

City:

000 Unincorporated

ooo Offineorporated

Building Information

Building: 1 (R01) Year built: 1962 Effective Year Built: 1972

 $\begin{array}{ccc} \textbf{Floor} & \textbf{Base} & \textbf{Finished} \\ \textbf{Area} & \textbf{Area} \\ 1.0 & 1170 & 1170 \end{array}$

Features

Feature Type Description

ICP

190

DETGAR

1050 SF

CONCP

200 SF

DETGAR

960 SF

Sales information

There is no sales information on record for this property.

Recorded Sales

There are no recorded sales available.

The Property Assessor's Office of Williamson County, TN presents this web site as a service to the public for informational purposes only. While we seek to present accurate, reliable, complete, current and useful information and products on this site, we do not guarantee or warrant the accuracy, reliability, completeness, or usefulness of the information at this site or at other sites to which we link. Therefore, any use of or reliance upon information or products from this site or a linked site is at the user's risk.

Williamson County Real Estate Assessment Data

New Search

County Number: 094 Current Tax Year: 2015

Property Owner and Mailing Address

SANFORD G T JR LE SANFORD JANICE P LE 7616 NOLENSVILLE RD NOLENSVILLE, TN 37135

Property Location

Address: 7624 NOLENSVILLE RD

Di: 18

Map: 085 Group:

Ctrl Map: 085

Parcel: 00101 PI: SI: 000

Value Information

Valuation Year:

2015

Land Market Value: \$903,600

Land Use Value: \$145,900

Improvement Value: \$105,000

Improvement Value:

\$105,000

Total Market Appraisal:

\$1,008,600

Total Use Appraisal:

\$250,900

Assessment %:

Green Belt

25%

Assessment:

\$62,725

General Information

Lot Dimensions: 0.00×0.00

Legal Acreage: 0.0000

Class:

111 Agricultural

City:

000 Unincorporated

Building Information

Building: 1 (R01) Year built: 1894 Effective Year Built: 1974

Floor Base Finished Area Area

1.0 2622 2622

Features

Feature Type

Description

EPF

220

Sales information

Sale date Price Deed book Deed Page

1996-04-02 \$0 1385

241

Recorded Sales

There are no recorded sales available.

The Property Assessor's Office of Williamson County, TN presents this web site as a service to the public for informational purposes only. While we seek to present accurate, reliable, complete, current and useful information and products on this site, we do not guarantee or warrant the accuracy, reliability, completeness, or usefulness of the information at this site or at other sites to which we link. Therefore, any use of or reliance upon information or products from this site or a linked site is at the user's risk.

Williamson County Real Estate Assessment Data

New Search

County Number: 094 Current Tax Year: 2015

Property Owner and Mailing Address

SANFORD G T III SANFORD LESSIA J 7616 NOLENSVILLE RD NOLENSVILLE, TN 37135

Property Location

Address: 7616 NOLENSVILLE RD

Di: 18

Map: 086 Group:

Ctrl Map: 086

Parcel: 01100 PI:

Value Information

Valuation Year: 2015

Land Market Value: \$213,200 Land Use Value: \$46,500

Improvement Value: \$208,400

Improvement Value:

\$208,400

SI: 000

Total Market Appraisal:

\$421,600

Total Use Appraisal:

\$254,900

Assessment %:

Green Belt

25%

Assessment:

\$63,725

General Information

Lot Dimensions: 0.00 x 0.00

Legal Acreage: 20.0100

Class:

111 Agricultural

City:

000 Unincorporated

Building Information

Building: 1 (R01) Year built: 1962 Effective Year Built: 1982

Base **Finished** Floor Area Area

1.0 900 900

Building: 2 (R02) Year built: 1984 Effective Year Built: 1991

Finished Base Floor Area Area 1.0 2744 2744

B 400 0

Ī	₹	ρ	2	1	h	n	r	es	

Feature Type	Description
ATTGAR	744
WDDK	540 SF

Sales information

Sale date Price Deed book Deed Page

2009-03-13 \$0	4764	711
2009-02-17 \$0	4736	353
1993-09-29 \$0	1124	600
1990-11-14 \$0	876	101

Recorded Sales

There are no recorded sales available.

The Property Assessor's Office of Williamson County, TN presents this web site as a service to the public for informational purposes only. While we seek to present accurate, reliable, complete, current and useful information and products on this site, we do not guarantee or warrant the accuracy, reliability, completeness, or usefulness of the information at this site or at other sites to which we link. Therefore, any use of or reliance upon information or products from this site or a linked site is at the user's risk.

SEWER SUBSCRIPTION CONTRACT

DATE:	-	
PRINTED NAME		
ADDRESS OF PROPERTY		LOT#
MAILING ADDRESS	1	□ VACANT LOT
TELEPHONE NUMBER	EMAIL ADDRESS	

I hereby make application to Tennessee Wastewater Systems, Inc. ("TWS") for sewer service at the address of property stated above. In consideration of the undertaking on the part of TWS to furnish sewer service, I understand, covenant and agree as follows:

- 1. (If VACANT LOT checked above): I agree to pay an annual Sewer Access Fee for the vacant lot I own until such time as a home is built on the lot and payment for sewer service begins.
- 2. I understand that the components of a sewer system have been installed on the property referred to above, which is owned or occupied by me, and which is to be connected with a wastewater disposal system owned and/or maintained by TWS. I warrant that any connection to and/or subsequent use to this system by the components on my property shall be in accordance with the Rules, Regulations and Plans of TWS. Regarding my usage of the system components on my property, which are owned by me, I covenant to follow the guidelines set forth in the <u>USER MANUAL</u> (Do's and Don'ts for an Effluent Collection System). Should I violate these Rules and/or abuse or damage my components, I understand that I must bear the expense to repair or replace the same in accordance with the Plans of TWS.
- 3. I acknowledge TWS, its successors and assigns have a perpetual easement in, over, under and upon the above specified land as shown on the property plat, with the right to operate and repair all components of the sewer system on my property, including but not limited to the interceptor tank and the Interceptor Pump or Interceptor Gravity Tank systems. I further grant TWS permission to enter upon my property for any reason connected with the provision or removal of sewer service or collection therefore.
- 4. For all other plumbing and structures on the property, including the outfall line to the interceptor tank, I agree that I am responsible for all operation and repair thereof.
- 5. I hereby authorize TWS to purchase and install a cutoff valve on my side of my water meter and grant TWS exclusive right to use such valve in accordance with its Rules and Regulations. However, the use of this valve does not in any way relieve me of my obligation to pay for water service to the service provider.
- 6. I understand and agree to promptly pay for service at the then current schedule of rates and fees and agree to abide by and be subject to TWS's billing and cutoff procedures. Should I not pay in accordance with TWS's Rules, I agree to pay all costs of collection, including attorney fees.
- 7. I accept the current Rules and Regulations and the Rates and Fees Schedule established with the TRA and agree to abide by any amendments to such Schedules. These rates are subject to change.
- 8. I agree that this Agreement shall remain in effect for as long as I own, reside upon or rent the above-described property. When such circumstances no longer exist, I agree to provide notice to TWS at least thirty (30) days in advance of my vacating the property.

	2	' نر
\		
	\	_

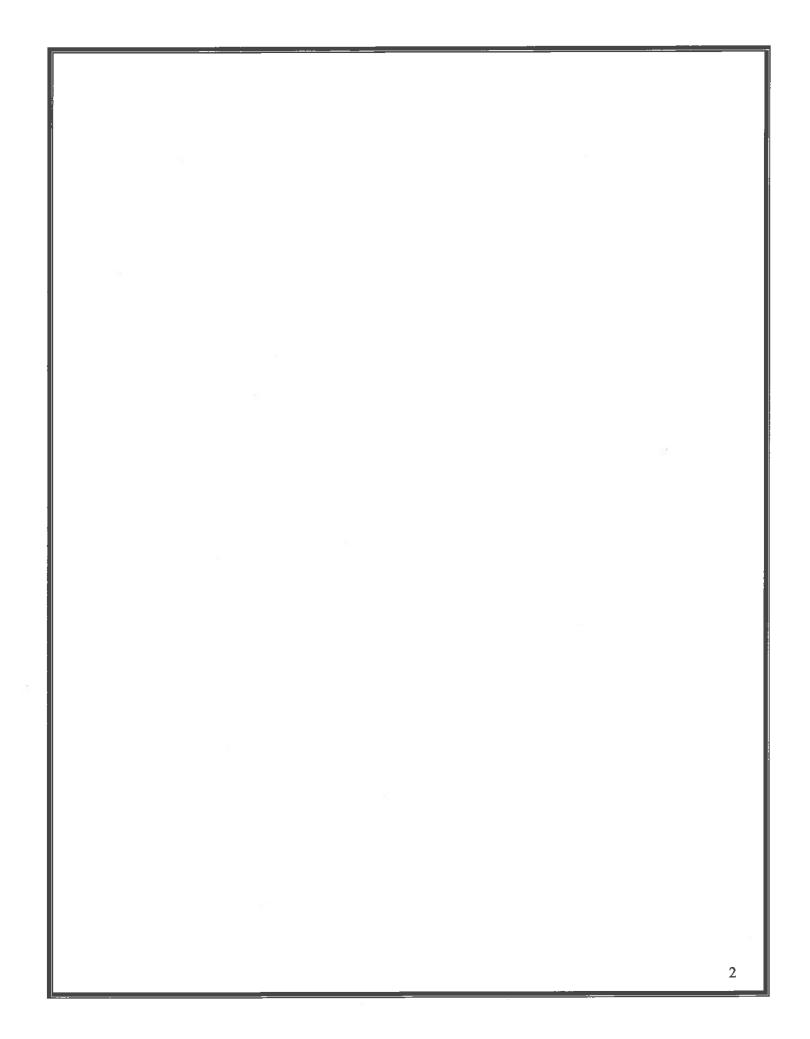
Nolensville-Dove Lake Treatment Facility

Williamson County, TN

DESIGN DEVELOPMENT REPORT & DETAILED SOILS INVESTIGATION REPORT

for

Tennessee Wastewater Systems, Inc.
Charles Hyatt, President
851 Aviation Parkway
Smyrna, TN 37167


Decentralized Wastewater Collection & Treatment Facility with

Slow Rate Land Treatment Disposal by Drip Irrigation

SEC Project No. 14204

Index

- 1. Site Description:
- 2. Scaled Drawings with 2-foot elevation contours showing the preliminary site layout
- 3. Design wastewater characteristics (influent to pre-application treatment and treatment effluent to disposal fields). If the project involves an existing facility, then actual, recent data should be used:
- 4. Water Balance / determination of design wastewater loading rates for each disposal field
- 5. Nitrogen Balance / selection of cover crop and management scheme
- 6. Background groundwater samples
- 7. Phosphorus and other constituent loading rates
- 8. Determination of wetted field areas and required storage volume
- 9. Process design for pre-application treatment facility
- 10. Detailed Soil Investigation Report
- 11. The back-up wastewater disposal site shall be identified and shown in the DDR. All proposed uses for the backup site shall be described in the DDR
- 12. Cost Estimates
- 13. If Auxiliary sites are anticipated beyond the primary dedicated disposal site, these sites or disposal options must be presented for review. Beneficial reuse opportunities with treated wastewater will be considered on a case by case basis
- 14. Staging or Phasing of Construction Appendix

1. Site Description:

1.1 Location Map

Exhibit 1.1

Street Address: 7624 Nolensville Road, Nolensville, TN 37135

1.2 Climate

The site is located in the North Temperate Zone of Middle Tennessee, which generally has mild climate year around, but still has four distinct seasons. The average temperature in winter is 39.2 degrees F. In the summer, the average temperature is 76.2 degrees F. The average annual temperature is 58.1 degrees F. The average annual precipitation is 51.8 inches. This information is from the National Oceanic and Atmospheric Administration's National Climate Data Center.

1.3 Geology (including subsurface hydrology)

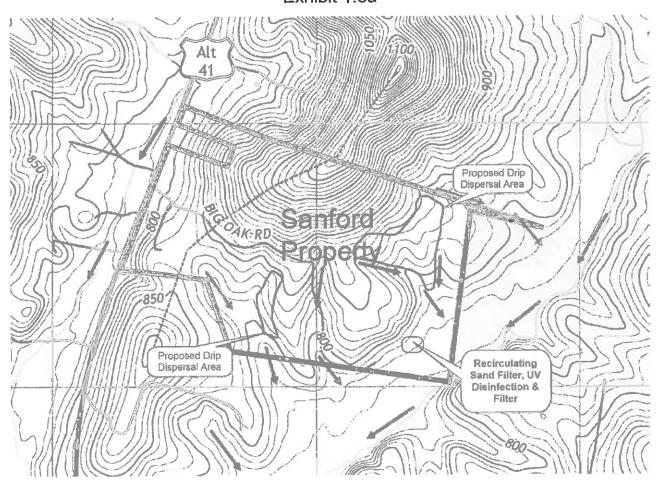
The attached USGS map (Exhibit 1.3a) indicates that the surface drainage flow path from the Nolensville-Dove Lake Treatment Facility is to the southeast, discharging into Arrington Creek watershed. The subdivision development is comprised of approximately 220 acres. The topography is mainly rolling slopes of 5 - 15 % with moderately steep slopes at the northern portion of the property. This moderately steep portion makes up approximately 35-40% of the property.

The property is bordered on the west by US 31 / US 41A / SR 11, on the east by Arrington Creek, on the north by undeveloped, forested property, and on the south by agricultural property. Roughly 40-45% of the site is wooded and the 11.4 acres required for drip dispersal is mostly cleared and farmed with row crops.

The property has mainly been used for row crops and woodlands. Groundwater was used historically to provide potable water. At this time the area is served by Nolensville College Grove Utility District with potable water.

It is assumed that the groundwater movement and surface flows are to the southwest with Arrington Creek and ultimately into the Harpeth River.

Most of the soils used for drip dispersal are underlain and formed from the Hermitage formation (Oh). In Williamson County, the Hermitage formation consists of flaggy beds of blue-grey sandy and earthy limestone separated by calcareous seams of shale, and calcareous sandstone associated with thin-bedded limestone. These beds are usually devoid of fossils, are locally phosphatic, and at many places simulate thin-bedded earthy yellowish sandstone on weathered surfaces.


The Hermitage formation ranges in thickness between 60 to 100 feet in the Nashville Basin and crops out at proper horizons throughout the basin. Water movement into the rock formations will be through weathered upper layers into cracks and fissures in the underlying limestone formations. These cracks and fissures are ground water

conduits with vast transmission capacity. These cracks occur usually by solution along preexisting bedding planes or joints. The network of joints and solution openings, both large and small, are filled with water up to a certain level, which is the water table. These underground passages are by no means fortuitous but tend to develop a definite drainage system which is tributary to the surface streams and is an integral part of the regional drainage mechanism. No water table was found in any of the soil auger borings or in pit excavations.

See the following exhibits below:

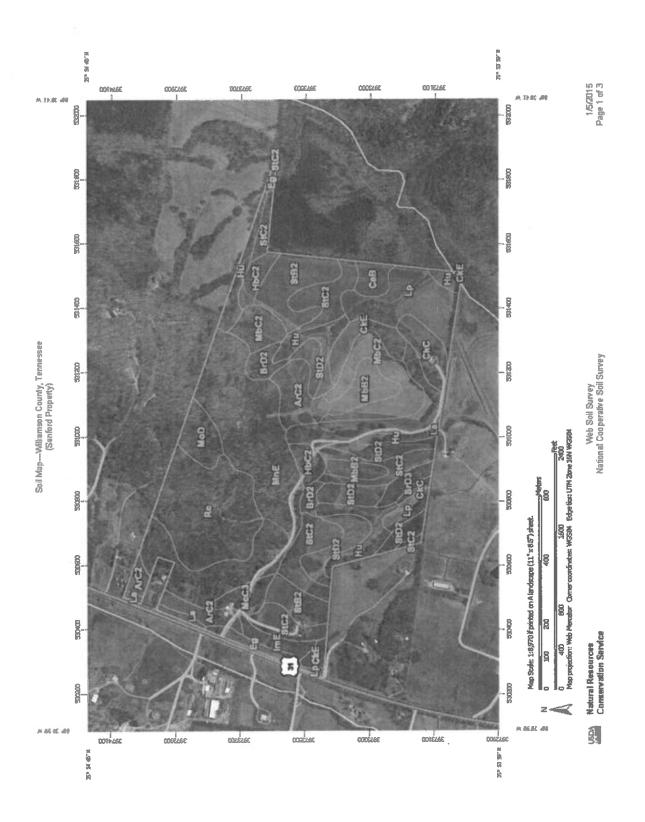

USGS Quad Map (showing surface flow) Exhibit 1.3a
USDA soils information Exhibit 1.3b
Geologic Map Exhibit 1.3c

Exhibit 1.3a

USGS Quad Map
Watershed Drainage

Exhibit 1.3b

NRCS Soils Map

Soil Map—Williamson County, Tennessee (Sanford Property)

MAP LEGEND

Very Story Spot Story Spot Spoll Area Wer Spot M 8 0 Ø Soil Map Unit Polygons Area of Interest (AOI) Soll Map Unit Points Soil Map Unit Lines Special Point Features Area of Interest (AOI)

Other	Special Line Features	firms
Q	•	Maker Peatures

	Festures	
	Line	
6	Special	atures
Ø		Water Fe

Borrow Pit

121

Blowout

3

Clay Spot

Closed Depression

Gravelly Spot

• 2

Graval Pit

X 0

Marsh or swamp

Lava Flow

Landfil

Wine or Querry

φĸ

Miscellaneous Water

Perennial Water

0

Rock Outcrop

>

Saline Spot

Sandy Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Enlargement of maps beyond the scale of mapping can cause missunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Warning: Soil Map may not be valid at this scale.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Please rely on the bar scale on each map sheet for map

measurements.

projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. Maps from the Web Soil Survey are based on the Web Mercator

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Williamson County, Tennessee Survey Area Date: Version 10, Aug 28, 2014

Soit map units are labeled (as space allows) for map scales 1:50,000 Date(s) aerial images were photographed: Mar 17, 2011—Jul 2,

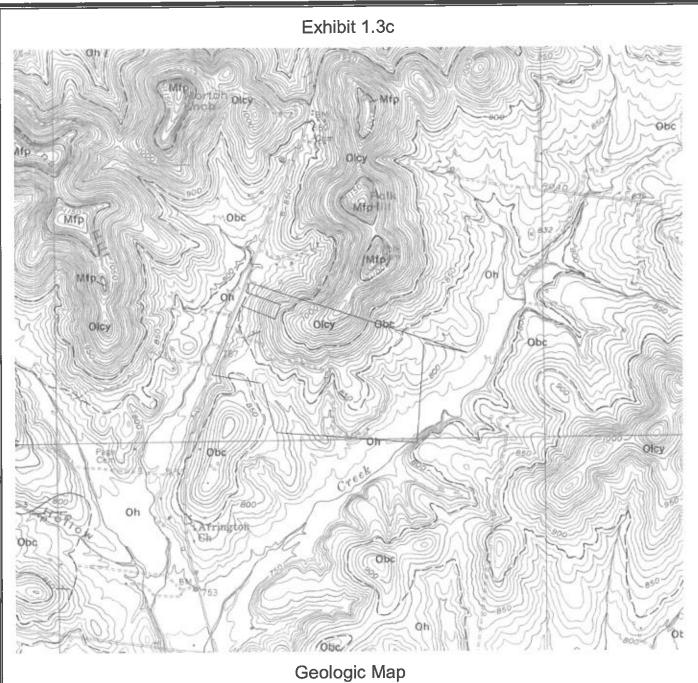
imagery displayed on these maps. As a result, some minor shifting The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background of map unit boundaries may be evident.

Severely Eroded Spot

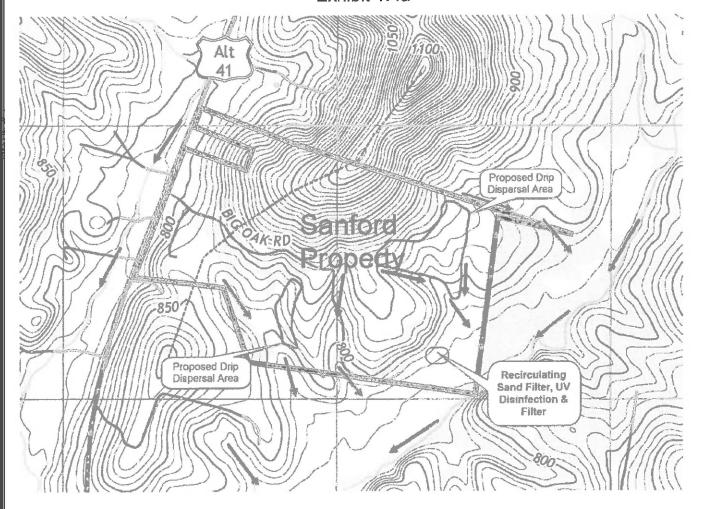
Slide or Slip

OAR

Sinkhole


Sodic Spot

Web Soil Survey National Cooperative Soil Survey


Map Unit Legend

Williamson County, Tennessee (TM187)				
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
ArC2	Armour sitt loam, 5 to 12 percent slopes, eroded	10.3	4.7%	
BrD2	Braxton cherty sit loam, 12 to 20 percent slopes, eroded	3.4	1.6%	
CaB	Captina silt loam, phosphatic, 2 to 5 percent slopes	2.6	1.2%	
CKC	Culieoka silt loam, 5 to 12 percent slopes	5.3	2.4%	
CkE	Culleoka silt loam, 20 to 35 percent slopes	5.6	2.6%	
Eg	Egam silt loam, phosphatic	2.5	1.2%	
HbC2	Hampshire silt loam, 5 to 12 percent slopes, eroded	4.9	2.2%	
Hu	Huntington silt loam, phosphatic	14.1	6.5%	
ImE	to 30 percent slopes, eroded	2.6	1.2%	
La	Lanton silt loam, phosphatic	1,4	0.6%	
ГЬ	Lindell silt loam, 0 to 2 percent slopes, occasionally flooded	14.2	6.5%	
MbB2	Maury silt loam, 2 to 5 percent slopes, eroded	6.8	3.1%	
MbC2	Maury silt loam, 5 to 12 percent stopes, eroded	13.5	6.2%	
McC3	Maury silty clay toam, 5 to 12 percent slopes, severely eroded	3,2	1.5%	
MnE	Mimosa-Rock outcrop complex, 20 to 40 percent slopes	39.9	18.3%	
MoD	Mimosa and Ashwood very rocky soils, 5 to 20 percent slopes	4.6	2.1%	
Rc	Rockland	21.9	10.0%	
SrD3	Stiversville clay loam, 12 to 20 percent slopes, severely eroded	2.2	1,0%	
StB2	Stiversville silt loam, 2 to 5 percent slopes, eroded	12.7	5.8%	
StCZ	Stiversville sitt loam, 5 to 12 percent slopes, eroded	21.8	10.0%	
SID2	Stiversville silt loam, 12 to 20 percent slopes, eroded	24.7	11,3%	
Totals for Area of Interest	And 2015 11 02 15 12 12 2007 11 12 18 A200 14	218.1	100.0%	

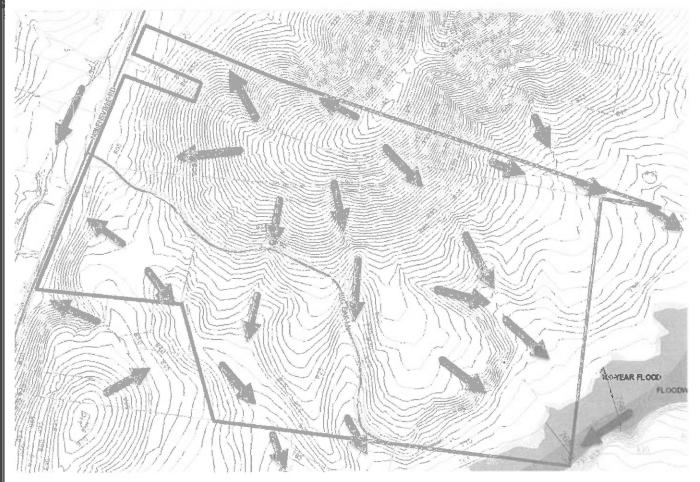
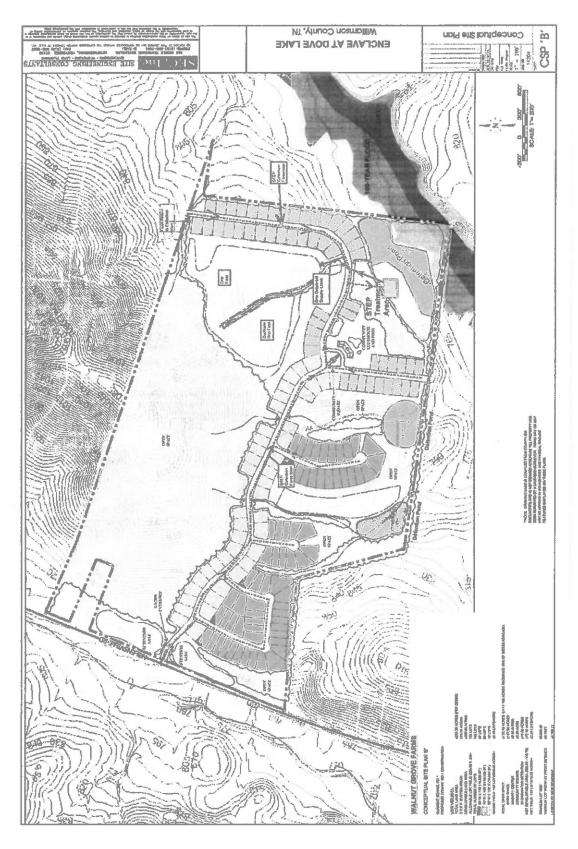

1.4 Topography

Exhibit 1.4a

USGS MAP of the Area

Exhibit 1.4b



Williamson County
Topographic Map
(5-ft. Contour Interval)

1.5 Access

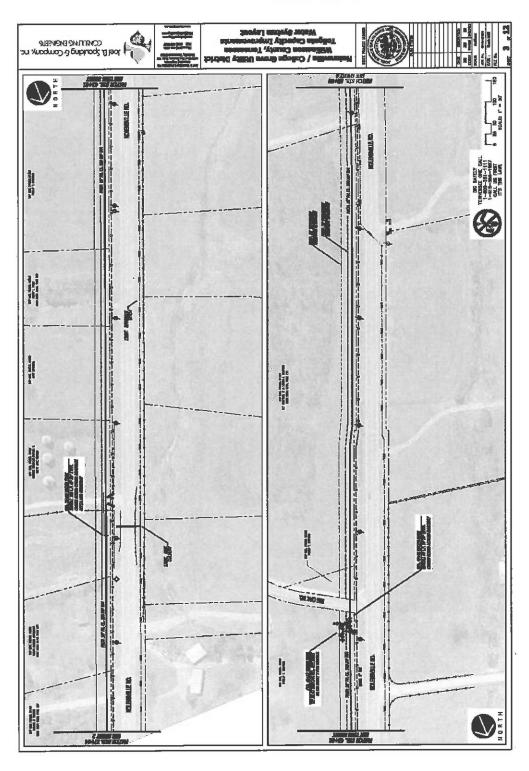

Access to the proposed Nolensville-Dove Lake TF and drip dispersal areas will be from County subdivision roads off Big Oak Road. Existing Big Oak Road will be reconstructed to County standards and will be the entrance drive from Nolensville Road that meanders through the site. The treatment area and the drip dispersal areas will be fenced. See attached site plan for locations.

Exhibit 1.5

1.6 Water supply wells within 1,500 LF of facility

Nolensville/College Grove Utility District currently supplies water to this area, and they are planning an upgrade to their system in this area. See attached drawing from their engineer, Joel B. Spaulding & Company, Inc. Exhibit 1.6a

Tennessee Wastewater Systems, Inc. (Nolensville-Dove Lake Treatment Facility) currently has a UIC / SOP permit at TDEC for approval. Also attached are the current well locations provided by TDEC. (See Map of Wells in the Area, Exhibit 1.6b, and Record of Water Wells, Exhibit 1.6c).

Exhibit 1.6b

Map of Wells in the Area

Note: Only Wells 4 and 8 are within 1,500 feet of the property.

) page 1 of 26

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

12/12/2006

GUAD / NTH WELL NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот <u>рертн</u> А <u>ф</u> <u>рертн</u>	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATITUDE	A/C 100	DRILLER USE
0070NW DAVIDSON	05709101	G.T.WHEELER	09/14/1964	851	2 80	1	~ B.	Good		8	219
DOZONW DAVIDSON	03709139	BRICHAM, A DON		300				:	:	2	755
OG70NW DAVIDSON	03709444	JAMES ROBINSON #-1		150						8	740
0070NW DAVIDSON	03709445	JAMES ROBINSON #-2		240			8			2	740
OCTONW WAYNE	18109129	WILLIAM EDMONDSON	06/14/1972	823	80		*			80	227
0070NW WILLIAMSON	18709062	WILLIAM EDMONDS	,	829	7 2		*:	Cood		2	740
6070NW WILLIAMSON	18709063	H.L.CYREE	02/01/1972	1009	1 482		е	Bad.		S	15
GOZONW	18709064	A.J.BURKE	07/24/1969	755 740	23 m		,			٤	219
OOTONW WILLIAMSON	18709111	ROBERT ADCOCK	08/05/1970	729	50		×	Badi .		No	756
0070NW WILLIAMSON	18709120	A.J.BURKE	07/24/1969	755	စာ ရုဂ္ဂ		•		:	8	313
OOTONW	18709126	H.L.CYREE	02/01/1972	1009	482		52)	Bad		8	15
DOZONW	18709157	LES POLK	03/13/1970	1028 975	305			000d		2	10
0070NW WILLAMSON	18709165	RANDOLPH SHERLING	10/20/1971	1096	~					Ş	50 10 10

Page 2 of 26

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

12/12/2006

RECORDS OF WATER WELLS ON THE NOLENSVILLE GUADRANGLE OUTDING TN

QUAD / NTH WELL NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот рертн Аф рертн	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATITUDE	A/C LOG	DRILLER USE
0070NW WILLIAMSON	18709/78	LARRY GIBBS	06/20/1972	955	13. 13.		925	poog		운	722
0070NW WILLIAMSON	18709180	LES POLK	03/13/1970	1028 975	305			Good		- 8	313
0070NW WILLIAMSON	18709313	B.O.JONES	05/14/1963	. 885	23 45			poop		8	740
6070NW WILLIAMSON	18709341	ALLAN CLAXTON		00 t				Bad		8	740
0070NW 1 WILLIAMSON	18700144	BEELER H	08/03/1964	89 tð	10 EG	18 Steel		Bad	355918 864430	s &	94 Residential
0070NW 1 WILLIAMSON	18700181	KOENJ	11/25/1964	303	0				355758 864257	ν 8	219 Other
0070NW 1 WILLIAMSON	18700496	FERRIS, CLARENCE EDMONSON PIKE	08/11/1967	927	r 65	Steel	31 - 927	Good		- 2	219 Residential
0070NW 1	18700743	MOONEYHAM A	06/18/1969	172 150	8 5	21 Staef	,	Good	355940 864241	s 02	55 Residential
0070NW 1 WILLIAMSON	18700858	LITTLE, VANCE LIBERTY CHURCH	03/31/1970	928 905	ъ 8	32 Steel	32 • 928	Good		8	227 Residential
0070NW 1	18701054	BENNETT, SCOTT CROCKETT	10/09/1972	928	107	20 Stael	20 - 928	0000 88		%	227 Residential
0070NW 1 WILLIAMSON	18701070	GIBBS, LARRY CROCKETT	06/20/1972	256	133	22 Steel	22 953	Good	A Addition of the Addition of	2	227 Residentiai
0070NW 1 WILLIAMSON	18701193	KOEN, JOHN SUNSET	08/04/1973	949	190	28 Steel	28 - 949	000d		8	219 Residentiai
0070NW 1	1870/279	JOHNSON W.	04/28/1971	365	₹	21 Steel	*	Good	<u>.</u>	8	227 Farm

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

QUAD / NTH WELLNUM COUNTY REG NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот DEРТН АQ DEРТН	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LONGITUDE	A/C.	A/C. DRILLER LOG USE:
0070NW 1 WILLIAMSON	18701724	ROLAND B	03/25/1977	248 240	22	Steel	e	Bad	355800 864248	S ON	15 Residential
0070NW 1 WILLIAMSON	18702108	зоитн в.с.	05/28/1980	150	100	24 Steel	*	Good	355854	S &	227 Residential
0070NW 1 WILLIAMSON	18702542	BRIDGES, CURT OLD SMYRNA	06/28/1984	120 22	52 22	24	Open Hole 21 - 120		355730 864230	S.	227 Residential
0070NW 1 WILLIAMSON	18702543	BRIDGES, CURT OLD SMYRNA	06/29/1984	280	0		•		355730	2	227 Residential
DOZOWW 1	18702561	EGGERT, ARTHUR CLOVERMEADE DR	07/16/1984	200	0		•		355730 864230	2	227 Residential
0070NW 1	18702779	GATLIN, W.W. OLD SMYRNA	08/06/1985	200			*		355730	2	227 Residential
0070NW 1 WILLIAMSON	18702811	CLINTON, JOHNNY MAXWELL LANE	04/18/1986	152	80 QQ	20	Open Hole 20 - 152		355730 864230	8	227 Residential
0070NW 1	18702813	MAXWELL, ALTON MAXWELL	04/23/1986	352	0.50	20	Open Hole 20	0	355730 864230	운	227 Heat Pump
0070NW 1 WILLIAMSON	18702814	MAXWELL, ALTON MAXWELL	04/24/1986	100	막	18	Open Hole 33 - 100		355730 864230	8	227 Residential
007DNW 1	18702820	LAMB, JOHN CONCORD	05/02/1986	88	20	20	Open Hole	83	355730 864230	S	227 Residential
0070NW 1	18702822	HALL, RUSSEL BUTTS	05/28/1986	200	25	20	20 - 650		355730	S	227 Residential
0070NW 1	18702825	POWELL, JAMES EDMENSON	05/22/1986	325	73	54	55 · 525	.	355730 864230	온	227 Irrigation
OOZONW 1	18702993	RAIMTREE SPLIT LOG	07/08/1987	300			*	3)	355730 864230	S.	227 Irrigation

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

QUAD / NTH WELL NUM COUNTY REG NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот рертн Ад рертн	TOT YELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL Insp number	LATITUDE	A / C	DRILLER USE
0070NW 1 WILLIAMSON	2003/1881 D0059263	PATTON, JEFF 8 CROOKED STICK LN	07/03/2003 05/05/2004	105	50	43 Galvanized	Open Hole 43 - 105	023841	355900 864335	Yes	647 Irrigation
OGZONW 1	20052559	POPE PROPERTIES INC CCI. WINSTEAD DR. LOT 74	08/17/2003	380 250	4-		•	Clear	355840 8 6434 2	Yes	227 Irrigation
0070NW 1	20032542 D0060240	FLOOD, THOMAS 7 WINSTEAD DR	08/17/2003 05/05/2004	360	25	46 Galvanized	Open Hole 46 - 360	Clear 029840	355835 964348	Yes	227 Irrigation
0070NW 1	20032543 D0060241	JOHN WEILAND HOMES 05/21/2003 CONCORD RD BONBROOKE I 06/25/2004	05/21/2003	460 70	4,5	20 Galvanized	Open Hole 20 - 460	Clear 029946	355909 86424B	F	227 Irrigation
0070NW 1	20032694 D0060248	CASTLE CONTRACTORS 09/06/2005 1010 MORGAN'S LANDING C' 05/05/2004	09/06/2003	360 258	9	41 Galvanized	Open Hole 41 - 360	029838	355945 864316	F Yes	227 Irrigation
0070NW 1	20052729 D0060254	SULLIVAN, PATRICK A 9609 MITCHELL PL	09/21/2003	300° 245	7.5	41 Galvanized	Open Hole 41 - 300	Clear 029837	355945 864317	F Yes	227 Irrigation
ODZONW 1	20053467 D0060269	BELL, KEN MAGNOLIA VALE, LOT 11	10/30/2003 05/05/2004	340 40	9	31 Galvanized	Open Hole 31 · 340	Clear 029839	355947 864305	F	227 Irrigation
0070NW 1 WILLIAMSON	20041739 D0064410	LEONE, BILL 9652 STANFIELD RD.	06/20/2004	265	65	20 Galvanized	Open Hole 20 - 265	029945	355941 864311	F	647 Irrigation
MILLIAMSON	20043085 D0066041	KLARITCH, TOM 1255 MORNING GLORY COU	08/29/2004 COUF 08/02/2005	400	0	62 Galvanized	Open Hole 62 - 400	Clear 045896	355907 864442	F Yes	227 Other
0070NW 1	20043905 D0066071	CARPENTER, BRIAN GOVERNORS CLUB, LOT 35	12/09/2004 09/15/2005	240	30 20	20 Galvanized	Open Hale 20 - 240	Clear 046420	355847 864345	Yes	227 Irrigation
DOTONW 1	20051200 D0069975	PARK TRUST DEVELOPMENT ENTRANCE OF ROLLING CRE	MENT 05/05/2005 0 CRE	340			٥		355922 864446	Yes	227 irrigation
OCTONW 1	20052774 D0066077	DRENNAN, LEON 9608 STANHELD RD	05/14/2005	300 17	£	20 Galvanized	Sfotted 17 - 18	Clear 046419	355930 864351	Yes	227 Irrigation
0070NW 1	20052973 D0070003	POPE PROPERTIES GOVERNOR'S CLUB, LOT 123	08/28/2005	340	מא		(%)	Clear	355833 864336	¥es	227 Irrigation

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

QUAD / NTH WELL NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	TOT DEPTH AQ DEPTH	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATITUDE	A/C LOG	DRILLER USE
0070NW 1 WILLIAMSON	20060103 D0070043	SMIDT, ADAM GOVERNOR'S WAY, LOT 303	09/23/2005	90	5 70	20 Calvanized	Open Hole 20 - 300	Clear	355830 864409	, Ke	227 Irrigation
0070NW 1	20060180 D0070038	SCHMIDT, ADAM 55 GOVERNOR'S WAY, LOT 3	09/19/2005	360	50	20 Galvanized	Open Hole 20 - 360	Clear	355829 864409	Yes	227 Other
0070NW 1 WILLIAMSON	20060181 D0070039	BROWN, ROGER 55 GOVERNOR'S WAY	09/16/2005	300 70	10 B	20 Gaivanized	Open Hole 20 - 300	Clear 047125	355824 864421	Yes	227 irrigation
0070NW 1 WILLIAMSON	20060348 D0074052	GOVENORS CLUB LOT 177	12/16/2005 01/27/2006	360	1.75	20 Calvanized		Clear 047124	355833	r žes	227 Irrigation
0070NW 1 WILLIAMSON	20063101 D0077101	MCSURLEY, DON 9652 CONCORD RD.	07/11/2006	280	50	20 Galvanized	Open Ho le 20 · 280	Clear	355911 864326	Yes	227 irrigation
0070NW 1	20063105	SNUD; PAIGE HIGH POINT ESTATES, LOT 5	07/14/2006 5	260	40	20 Galvanized	Open Hole 20 · 260	Clear	355913 864335	Yes	227 Irrigation
0070NW 1	20063106	SNEED, PAIGE HIGH POINT ESTATES, LOT 5	07/14/2006	80			•			Yes	227 Irrigation
0070NW 1	20063128 D0077103	SNEED, PAIGE HIGH POINT ESTATES, LOT 5	07/14/2006	260 140	æ	20 Galvanízed	Open Hale 20 - 260	Clear		Yes	227 Irrigation
0070NW 1	20064329 D0077149	LUPER, STEVE 9551 LIBERTY CHURCH	09/28/2006	340			33		355945 864402	Yes	227
0070NW 1	91003813	MERCER, JOE SPLIT LOG	10/07/1991	200 85	2	50	Open Hole 20 · 200			S	227 Farm
0070NW 1 WILLIAMSON	93001983	FOSTER, CHET 1512 PINKERTON	07/22/1991	495		21 Steel	Open Hole 21 - 495			2	SS Residential
0070NW 1	94002501	ROGERS, OWEN LIBERTY CHURCH	07/20/1994	200	1	20	open Hole 20 - 200		***	S S	227 Residential
ODTONW 1	94004874 D0005594	NORTHCUTT, ANN 233 ENDOVER WAY	11/12/1894	445	800	25 Stael	Open Hole 25 - 445	Sulphur		2	647 Irrigation

3/12/2006

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

SOUNTY REG NUM	WELL NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	TOT DEPTH	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATTHUDE	A/C 10G	DRILLER USE
1 NOS	96003368	BRANNON, TODD WESTON DR	06/24/1996	200			200			Š	227 Irrigation
	96004130	FRITCH, HERB EDMONDSON PIKE	08/08/1896	280	2		,			8	227 Irrigation
0070NW 1	96004131	FRITCH, HERB EDMONDSON PIKE	08/08/1996	300			•			2	227 Irrigation
0070NW 1	97003272	THE GOVERNORS CLUB CONCORD RD	08/05/1997 06/26/1998	260	le .		Open Hole	02/640	355826	8 8	227 Irrigation
0070NW 1	97003273	THE GOVERNORS CLUB CONCORD RD	08/06/1997	240			•	021639	355832	v 8	227 Irrigation
0070NW 1	97005279	THE COVERNORS CLUB	07/28/1997 06/26/1998	300	25	25	Open Hole 52	300 02/636	355947	S S	227 Irrigation
0070NW 1	97003280 D0021561	THE GOVERNORS CLUB	08/04/1997	300	22	99	Open Hole 66 - 300	0 021637	355851	ς, <u>2</u>	227 Irrigation
OO7DINW 1	97005281 D0021562	THE GOVERNORS CLUB	08/07/1997	300	9 40	20	Open Hole	300 021638	355824	S S	227 Irrigation
0070NW 1	97003856	WILSON, PACKER CONCORD RD	09/05/1997	260			*			8	
OCTONW 1	97004709	JAMES, CAROLYN WISHIRE WAY	10/20/1997	170	0 0		,	011916	355951	™ S	· 1
OGZONW 1	98003702	THE COVERNORS CLUB CONCORD RD	09/04/1998		150 6D		4	024302	864420	s 2 1	
0070NW 1	98003705	THE GOVERNORS CLUB	08/27/1998 10/13/1998		200		•	024301	555829	S S	
0070NW 1 WILLIAMSON	98003720	THE GOVERNORS CLUB CONCORD RD	10/13/1998		300 S 70	8	20 Open Hole	300 619879	355838 864420	s o	227 Irrigation

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

QUAD /NTH WELL NUM COUNTY REG NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE INSP DATE	тот рертн Ао рертн	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATITUDE	A/C	DRILLER USE
0070NW 1	98003721 D0028778	THE COVERNORS CLUB CONCORD RD	08/31/1998 10/13/1998	300	30	53	Open Hole 59 - 300	049899	355853 864349	S S	227 Irrigation
0070NW 1	98003722 D0028779	THE GOVERNORS CLUB CONCORD RD	09/01/1998	220	30	20	Open Hole 20 - 220	019877	355909 864354	S ON	227 Irrigation
0070NW 1	98003723 D0028780	THE COVERNORS CLUB CONCORD RD	09/02/1998	300	30	50	Open Hole 20 - 300	300 019878	355855 864404	s &	227 Irrigatfon
0070NW 1 WIELFAMSON	98003724 D0028781	THE GOVERNORS CLUB CONCORD RD	09/05/1998	300	8 0	20	Open Hole 20 300	300 D19883	355858 864402	s &	227 Irrigation
0070NW 1 WILLIAMSON	98003728 D0028786	LEE, KEVIN HERITAGE DR	09/11/1998	220 110	10	Ø	Open Hole 20 - 220			2	227 Residential
DOZONW 1 WILLIAMSON	99000160 D0037341	THE GOVERNORS CLUB CONCORD RD	11/23/1998	260 157	45	20	Open Hole 20 - 260			8	227 Irrigation
0070NW 1 WILLIAMSON	99002245 D0037416	SANDERS, DAVID RACSDALE 1626	06/23/1999	242	82	8	Open Hole 20 - 242	~		2	227 Irrigation
OOZDNW 1	99002700	MADDUX, JERRY HAMMER CT	07/18/1999	360			.*:			No	227 Irrigation
0070NW 1	99002702 D0037422	CUTLER, CATHERINE CONCORD RD	07/08/1999	220	22 49	57	Open Hole 57 - 220		·	S	227 Irrigation
DD70NW 1	99003893 D0039299	THE GOVERNORS CLUB 9681 CONCORD RD	08/03/1999	300 130	30	20	Open Hole 20 · 300	Good 0 028640	35590B 864414	s No	647 Irrigation
0070NW 1	99005894 D0039500	THE GOVERNORS CLUB 9681 CONCORD RD	08/04/1989	240 75	125	20	Open Hole 20 240	Good 0 028609	355901	2 S	647 Irrigation
0070NW 1 WILLIAMSON	99003895 D0042304	THE COVERNORS CLUB 9681 CONCORD RD	08/05/1999 04/10/2001	240	150	23	Open Hole	Good 20 025136	355901 864337	w S	647 Irrigation
OGZONW 1	99004084 D0039296	THE GOVERNORS CLUB 9681 CONCORD RD	07/29/1999	300	30	23	Open Hole 20 · 300	Good 0 028612	355905	N N	647 Irrigation

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

50 20 Open Höle 30 20 - 300 50 20 - 300 125 20 - 300 125 20 Open Höle 25 20 Open Höle 25 20 Open Höle 35 20 - 260 20 - 260 20 - 260 21 240 1 24 25 240	\$ 02	QUAD / NTH WELL NUM COUNTY REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот рертн Ао рертн	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT GUAL INSP NUMBER	LATITUDE	A/C 106	ORILLER USE
THE GOVERNORS CLUB 04/10/2001 125 30 20 0 pen Hole 20 30	B 0	039297	THE COVERNORS CLUB 9681 CONCORD RD	07/29/1999	300	50	20	an Hole		355904 864406	N S	647 irrigation
THE COVERNORS CLUB 08/05/1989 240 125 20 Open Hole 9661 CONCORD RD 06/10/2001 70 20 20 20 - 240 THE COVERNORS CLUB 08/06/1999 220 125 20 0pen Hole 20 - 250 GOVERNORS CLUB 08/09/1999 260 40 20 0pen Hole 20 - 250 1 9681 CONCORD RD 04/10/2001 80 240 5 20 - 250 1 HE GOVERNORS CLUB 08/11/1989 240 5 20 - 240 2 GOVERNORS CLUB 08/11/1989 240 5 20 - 240 3 GOVERNORS CLUB 08/11/1989 240 5 20 - 240 1 HE GOVERNORS CLUB 08/11/1989 262 6 5 20 - 240 1 RAGSDALE 1620 11/16/1982 120 35 36 5teel - 240 1 RAGSDALE 1620 11/16/1982 120 30 5teel - 240 2 BATTLE	1 187 =	9004086	THE GOVERNORS CLUB 9681 CONCORD RD	07/30/1999	300 125	30	20	Open Hole 20 · 300		355906 864411	5 S	647 Irrigation
THE COVERNORS CLUB 08/06/1989 220 125 20 Open Hole 20 0687 CNUCORD RD 04/10/2001 70 25 25 20 Open Hole 20 0687 CNUCORD RD 04/10/2001 80 20 09en Hole 20 04/10/2001 75 20 20 Open Hole 20 0681 CNUCORD RD 04/10/2001 75 20 20 Open Hole 20 0681 CNUCORD RD 12/10/2001 75 20 20 Open Hole 20 20 06en Hole 20 20 06en Hole 20 20 20 20 20 06en Hole 20 20 20 20 20 20 06en Hole 20 20 20 20 20 20 20 20 20 20 20 20 20		9004087	THE GOVERNORS CLUB 9681 CONCORD RD	08/05/1989 04/10/2001	240	125	20	Open Hole 20 - 240		355901 864554	S Q	647 trrigation
GCVERNORS CLUB 08/09/1999 260 40 20 0pen Hole 1 THE GOVERNORS CLUB 08/10/2001 240 5 20 240 5 20 240 20 240 20 240 240 20 240 20 240 20 240 240 20 240 20 240 20 240 262 20 20 240 262 20 20 240 262 20 20 20 262 20 20 20 262 20 20 262 20 20 262 20		90042305	THE COVERNORS CLUB 9681 CONCORD RD	08/06/1999	220	125 25	20	Open Hole 20 - 220		355900 864331	v S	647 Irrigation
THE GOVERNORS CLUB DBV*11/1999 240 5 20 Open Hole 1 400/2004 75 6 20 0pen Hole 240 5 240		99004089	GOVERNORS CLUB 9681 CÓNCORD RD	08/09/1999	260	40	20	Open Hole 20 - 26		355820 864338	S NO	647 Irrigation
TOLLISONEY, JOHN 12/02/1999 262 6 20 Open Hole 262		39004091	THE GOVERNORS CLUB 9681 CONCORD RD	08/11/1999	240	in.	20	Open Hale		355817 864336	S S	647 Irrigation
RUCKER B.F #-2 11/16/1982 120 21 Steel BATTLE 50 70 71 71 72		99005932	LOONEY, JOHN RAGSDALE 1620	12/02/1999	262 50		20	Open Hole 20	2	200	. Q	227 irrigatlon
05701320 B F RUCKER 01/12/1983 120 1 21 C 05709059 BATTLE 50 30 Steel .	1 -	03701301	RUCKER B.F #-2 · BATTLE	11/16/1982	120		24 Steel		Bad	355730 864000	S	227
DODSON BATSON 10/01/1962 916 1 425 PETUS RD 10/51/1987 105 10 20 Open Hole TOLLISON, HAROLD 10/51/1987 105 10 20 Open Hole LASSITER 90 80 Steel 20 105 PURDONA K 12/10/1963 125 25 14 MOONEYHAM B 05/04/1964 64 15 19 AMOONEYHAM B 05/04/1964 64 15 55	1	05701320	B F RUCKER BATTLE	01/12/1983	120 50	٧.	21 Steel	•	Good	355730	S _S	227 Residential
TOLLISON, HAROLD 10/31/1987 105 10 20 Open Hole LASSITER 90 80 Steel 20 - 105 PURDONA K 12/10/1963 125 25 14 65 55 Steel 20 - 105 64 15 19 50 Steel 20 - 105 64 19 50 Steel 20 -		03709059	DODSON BATSON PETTUS RD	10/01/1962	9/16 865		425	Ì		355730	SS.	740
PURDONA K 12/10/1963 125 25 14 65 55 Steel	r .	14903262	TOLLISON, HAROLD LASSITER	10/31/1987	<u>8</u> 8		20 Steel	Open Hole		355730	2	559 Residential
MOONEYHAM B 05/04/1964 64 15 19		18700041	PURDONA K	12/10/1963	ជួន		Stee		poop	355842	s o	219 Residential
10000 00	ı	18700120	MOONEYHAM B	05/04/1964	20 S		19 Stael		Cood	355902	S S	755 Residential

2/12/2006

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION • DIVISION OF WATER SUPPLY

QUAD / NTH WELL NUM COUNTY REG NUM	WELL NUM	OWNER'S NAME LOCATION RGAD	COMP DATE INSP DATE	тот рерти Ао рерти	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LONGITUDE	A/C 106	DRILLER USE
0070NW 2 WILLIAMSON	18700127	HYDEJ	07/09/1964	105 105	25	25	•		355837 864008	s on	219 Residentiai
0070NW 2	18700129	NICHOLS H	07/16/1964	120	103	12 Steel	•	Cood	355841 864010	S NO.	219 Residential
0070NW 2 WILLIAMSON	18701846	HAMLETT J P	11/26/1978	300	8	22 Steel	•	Good	355853 864227	S &	15 Residential
0070NW 2 WILLIAMSON	18701961	нац.	08/15/1978	348	0	24 Steel			355854	s S	227 Other
0070NW 2 WILLIAMSON	16701962	HALLJ	09/21/1979	600. 514	180	21 Steel	•	Bad	355855 864220	s S	227 Residential
0070NW 2	18702090	FIRST LADY BEAUTY S	09/11/1980	310	+ ¢	21 Steel			355824	s 8	15 Commercial
0070NW 2 WILLIAMSON	18702109	HOBES J	05/28/1980	140	30	Steel	,	poop	355856	S ON	227 Residential
0070NW 2	18702216	RANDOLPH B	05/05/1981	180	22 22	Steel	•	Good	355850 864140	w 8	227 Residential
007DNW 2 WILLIAMSON	18702551	HUCHES, MAE NOLENSVILLE	06/21/1984	340		Z	Open Hole	340	355730	온	227 Heat Pump
0070NW 2	18702574	POTEETE, DANNY LEE BURKE HOLLOW	08/22/1984	. 140 35	-	21	Open Hofe	140	355730	Ş	227 Residential
0070NW 2 WILLIAMSON	18702583	ZULAUF, GARY MAXWELL	08/19/1984	145	45	20 Steel	Open Hale	Good 145	355824 864135	S S	15 Residential
007DNW 2 WILLIAMSON	18702653	CHASTAIN, WILBUR SUTTON	05/07/1985	-182 -95	40	50	Open Hole	182	855730	2	227 Residential
0070NW 2 WILLIAMSON	18702688	BRUCE, BILL BLACK WELL	08/05/1965	145	25	20 Steel	Open Hole	145	355730	8	15 Residential

12/12/2006

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIMSION OF WATER SUPPLY

RECORDS OF WATER WELLS ON THE NOLENSWILE QUADRANGLE COZONNY TN

QUAD / NTH WELL NUM COUNTY REG NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот рертн Ао рертн	TOT VIELD STAT LEVEL	CSE DEPTH' CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATTITUDE	A/C LOG	DRILLER Use
0070NW 2 WILLIAMSON	18702955	TACKITT, MOLLIS MAXWELL LANE	02/13/1987	140	30	20	Open Hole 20 - 140		355730	No	227 Residential
0070NW 2	18705278	PACHAN, TOM NOLENSVILLE	03/16/1989	400	*	20	Open Hole 20 - 400	Cood	355730 864000	2	227 Residential
0070NW 2	18705284	Freeman, Porter Nolensville Rd	10/15/1988	300	10	20 Steel	Open Hole 20 - 300	Fair	355730 884000	Ş	15 Residentiai
0070NW 2	18709015	GAIL CLARK			Ψ.		*		355824 864006	s ≥	15
0070NW 2 WILLIAMSON	20002660 D0044856	MITCHELL, JR, CHARLIE SUNSET CREEK	06/14/2000	240	755	41 Galvanized	Open Hole 41 - 240			Zes X	227 Irrigation
0070NW 2 WILLIAMSON	20003535 D0044842	WALKER, LARRY 7216 NOLENSVILLE RD	07/19/2000	260	2 20	20 Galvanized	Open Hole 20 - 260	Clear		Yes	227 Irrigation
0070NW 2 WILLIAMSON	20004801 D0044573	MURRAY, CONNIE 9412 ASHFORD PL	09/08/2000	300	0	20° Galvanized	Open Hole 20 - 300	Unknown		Yes	647 Residential
0070NW 2	20022289 D0057152	Bush, Byron 1652 Sunset Rd	07/20/2002 12/21/2004	320	80	20 Galvanized	Open Hole . 20 - 320	7. 320 045136	355746 864123	л 89 295	227 Residential
0070NW 2	20023402 D0057176	PACHAN, TOM 7115 NOLENSVILLE RD	10/19/2002	142	60	20 Galvanized	Орел Hole 20 - 142	Clear .	355833	Yes	227 Irrigatton
0070NW 2 WILLIAMSON	20023403 D0057177	JONES, JERRY 9775 CONCORD RD	10/23/2002	300	20	20 Gafvanized	Open Hole 20 - 300	Clear	355927 864159	Yes	227 Irrigation
0070NW 2	20023404	JONES, JERRY 9775 CONCORD RD	10/20/2002	300			**		355923 864200	Yes	227 Irrigation
0070NW 2	20042969 D0066044	SUAVE, ROGER 7049 NOLENSVILLE RD.	09/05/2004	260	60	20 Galvanized	Open Hole 20 - 260	Clear 045891	355857 864051	Yes	227 Irrigation
0070NW 2 WILLIAMSON	20042972	PULTE HOMES OWL LANDING / CONCORD F	08/22/2004 5 F	320			ă.		35596 86429	Yes	227 Irrigation
									7		

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

OUAD / NTH WELL NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	ТОТ ВЕРТН АО ВЕРТН	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LONGITUDE	A/C 100	DRILLER USE
DD70NW 2	20061460	PATTERSON, TED 1000 BLAKEPPELD DR	03/24/2006	300			£		355956 864255	. Yes	rrgation .
0070NW 2	20061461 D0074069	LIPPE, DAVID 1013 BLAKEFIELD DR	04/14/2006	300	49 82	20 Galvanized	Open Hole 20 · 300	Clear	355949 864252	Yes	227 Irrigation
0070NW 2	90000625	ALLEN, TOMMY BUTTS RD	06/07/1989	220	7	23	Open Hole 25 · 220	0000		8	647 Residential
ODTONW 2 WILLIAMSON	90000874	SHAVER, DALE NOLENSVILLE RD	03/07/4990	140	80	8	Open Hole 20 · 140			2	227 Residential
0070NW 2 WILLIAMSON	91003655	FOWLER, GERALD NOLENSVILLE	10/22/1891	08 05	9	20	Open Hole 20 - 80			SO.	227 Residential
0070NW 2	97004832 D0026315	TAYLOR, JAMES MAUDIN RD	10/02/1997	3305 305	2	20 Stael	Open Hole 20 - 330	poog		S	15 Residential
0070NW 2 DAVIDSON	98004857 D0030047	HENSON, AL GLORYLAND LN	10/06/1998	1004	700	Streel	0pen Hole 41 - 1004	0000 t		S	15 Irrigation.
0070NW 2	99000162 D0037346	ARLEDGE, BUZZ QUIET LN	12/07/1998	200	40	02	Open Hote 20 - 200			. ₽	227 Other
0070NW 2	99000722 D0050809	DELOUCH, DAVID GLORY LAND UN	04/29/1999	1004	t 98	41 Steel	Open Hala 41 - 1004	Good		Se .	15 Irrigation
0070NW 2 WILLIAMSON	TN009084	DOWELL, RAYMOND MAXWELL	05/07/1985		50		•	009081	355826	s &	740
0070NW 2 WILLIAMSON	TN009086	ESTES, TOM MAXWELL	05/07/1985		100		•	980600	355829	N S	740
DAVIDSON 3	5 03701173	BOMBS C	08/30/1977	985 975	10 10	21 Steel	,	Good	355837 863722	5 · S	rs Residential
0070NW 3 DAVIDSON	3 03701275	RUCKER III B. F. BATTLE	06/23/1982	240	30		W	Bad	355953	S 2	227 Other

12/12/2006

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

QUAD / NTH WELL NUM COUNTY REG NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION RDAD	COMP DATE	тот DEP TH А <u>о</u> DE P TH	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH ·	WAT OUAL INSP NUMBER	LATITUDE	A/C L00	DRILLER USE
0070NW 3 DAVIDSON	03701306	PHILLIPS JOHN	10/25/1982	400	160	32 Steel	4	Cood	355840 863756	S S	227 Residential
DAVIDSON	03701307	OVERBACK WILMA KIDD	10/12/1982	400	70	77 Steel	4	0000	355850 863818	S S	227 Residential
0070NW 3 DAVIDSON	03701470	HENSON, ERNEST DAL TWIN OAKS DR	05/16/1985	125 80	4	20 Steel	Open Hole 20 - 125	Good	355730 863730	2	15 Residential
0070NW 3 WILLIAMSON	18700187	Atlen W		135	23 123	12 Steel	,	Good	355837 863956	s &	219 Residential
OOTONW 3 WILLIAMSON	18701599	YATES R	07/19/1976	145 130	\$	Steel		goog	355825 863916	S S	15 Residential
0070NW 3	18701707	HENRY J	05/27/1977	310 290	₹-	21 Steel	٠	Bad	555828	s &	15 Residential
0070NW 3 WILLIAMSON	18702159	PIERCEY J H	03/26/1981	350	-	42 Steel		Good	355840	s &	15 Residential
0070NW 3	18702587	WILLIAMS, CH YORK	06/20/1984	227	30	20 Steel	Open Hole 20 - 227	Good	355730	No	15 Irrigation
0070NW 3	18702743	TURNER-MCFARUN KIDD	09/12/1985	K 18	20 22	20	Open Hole	75	355750 863730	8	227 Farm
0070NW 3	20011108 D0052395	GRAY, ALLEN MCFARUN RD	03/19/2001	245 170	₩ Q	21 Calvanized	Open Hole	Clear 0 029381	355809 863745	F	647 Residential
DAVIDSON 3	20031611 D0061776	NELSON, RICHARD 13405 OLD HICKORY BLVD	06/18/2003 10/03/2005	942	55 190	20 Steel	open Hole	942 046585	355958 863759	± Xes	15 Irrigation
0070NW 3	3 20050460 v D0069955	SULLIVAN, RICHARD 1515 SHAMROCK MEADOWS	02/20/2005 rs	150	99	29 Calvanized	Open Hole 29 - 150	Clear	3558 3 863743	Yes	227 Residential
0070NW 3	5 94004407 N	COLEWELL, DALE G KIDD RD	03/26/1991	300	7	20 Steel	Open Hole 20 - 300	Sulphur 30		S.	15 Residential

2/12/2006

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

COUNTY REG NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот ОЕРТН АО ОЕРТН	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATITUDE	A/C 106	DRILLER USE
0070NW 3	98002848 D0027634	GUESS, KELLY KIDD RD	06/24/1998	175 125	7	20 Steel	Open Hole 20 - 175	Unknown 026979	355849 863930	s &	191 Residential
OUTDAW 3	98004403 D0028761	GRIFFIN, ALICIA ACORN GT	09/18/1993 01/28/1999	200	din.	202	Slotted 15 · 16	024405	355754 863940	r S	227 Other
0070NW 4 WILLIAMSON	18700004	Tibbens J	08/21/1963	808 804	NO.	17 Steel		Good	355615 864350	S ON	755
DOZONW 4	18700514	WARPOOL, HENRY OWI CREEK	11/08/1967	845	129	25 Steel	25 845	Good		2	219 Residential
DOZONW 4	18701809	ALLBRIGHT J	04/14/1978	175	*8	20 Steel		Cood	355716 864308	s &	227 Residential
0070NW 4	18701810	ALLBRIGHT	04/M3/M978	285	0	20 Steel	٠		355718 864309	S S	227 Other
0070NW 4	18701966	MABRYVL	10/11/1979	240	65	24 Steel		. 0000	355501 864440	εν S	227 Residential
DOTONW 4	18702526	TURNER, JOHN SPLIT LOG RD	06/21/1984	345 112	~	72	Open Hole 21 . 345	ı,	355230	N _O	577 Residential
DOZDINW 4	18702554	FOSTER, ROBERT SPLIT LOC	05/22/1984	260	160	24	Open Hole 21 - 260	9	355500 864230	8	227 Residential
DOZONW 4	18702575	JEFFRIES, FRED M OWI, CREEK ROAD	08/23/1984	102	83	92	Open Hole	102	355500 864230	2	227 Residentiai
0070NW 4	18702599	M C I CLOVERCROFT	09/28/1984	1243	40	73	Open Hole	23	355500	8	227 Residential
0070NW 4	1 18702770 v	FOSTER, ROBERT SPLIT LOG	08/08/4985	146	5 52	50	Open Hole 20 -	450	355500	S	227 Heat Pump
0070NW 4	1 18703006 N	CAWTHON, JAMES SPLIT LOG	04/16/1987	1100	9	22	20 - 1100	20	355500	S	227 Residential

12/12/2006

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

QUAD / NTH WELL NUM COUNTY REG NUM	WELL NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	ТОТ БЕРТН АО БЕРТН	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATITUDE	A/C LOG	DRILLER USE
0070NW 4	18703008	WOODRING, TUCK SPLIT LOG	04/22/1987	950	NO.	20	Open Hole 20 - 950		355500 864230	2	227 Residentiai
0070NW 4	18703045	WARPOOL, HUGH BURK HOLLOW	04/30/1987	290		20 Steel	Open Hole 20 290	Iron	355500	운	45 Residential
0070NW 4	20000520 D0041089	BIENVENU, GARY 1605 RAGSDALE RD.	01/07/2000	260	4 8	20 Calvanized	Open Hole 20 - 260			Yes	227 Irrigation
OOZONW 4	20004067	GILMER, RON 9439 CLOVERCROFT RD	09/04/2000	260	0		×			Yes	227 Irrigation
007DNW 4 WILLIAMSON	20004069	GILMER, RON 9439 CLOVERCROFT RD	09/08/2000	140			ž.	26		Yes	227 Irrigation
0070NW 4	20014971 D0053961	DERR, RON 9478 WINSTON DR	11/05/2001	162	8 \$	20	Open Hole 20 - 162	Clear	٠	Yes	227 Irrigation
0070NW 4	20014985	BROWN, MICHAEL 9475 WINSTON DR	11/04/2001	200			•			Yes	227 Irrigation
0070NW 4 WILLIAMSON	20033463 D0060265	WOLF, JOHN SPLIT LOG RD	10/23/2003	100	15	20 Galvanized	Open Hole 20 - 100	Clear 0 029843	355703	Yes	227 Residential
0070NW 4	20033466	GILBERT, BRENT 9775 SPLIT LOG RD	10/26/2003	100 25	20	20 Galvanized	Open Hote 20 - 100	Muddy 0 029842	355710 864306	т Yes	227 Residential
0070NW 4	91003450	TALLEY, J M TULLOSS RD	08/09/1991	225		,	o •			No	647 Residential
DOZDNW 4	92000375	LEE, ROBERT H SPLIT LOG	01/06/1992	160	33	20	20 160	0		2	227 Residential
0070NW 4	93002088	AVERWATER, JIM GLOVERCROFT RD	11/09/1992	263 2/5	ħ	A .	Open Hole 41 - 263	ıΩ		S	227 Residential
OOTONW 4	94003475	WARREN, GARY BUTTER HOLLOW	08/16/1994	350	D	20 Stael) Open Hole	0.		N	15 Residential

Tennessee Department of Environment and Conservation - Division of Water Supply

QUAD / NTH WELL NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	TOT DEPTH AO DEPTH	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	wat qual Insp number	LATITUDE	A/C 100	DRILLER USE
0070NW 4	94003780 D00/10276	WARREN, GARY BUTLER HOLLOW	. 08/16/1994	885	र्	20 Steel	Open Hole	Cood		S	15 Residential
0070NW 4	96003520 D0017305	HEENY, MICHAEL SAM DONALD 9813	07/23/1996	940	ભ	ଅ	Open Hofe 20 - 840	840 024404	355705	F S	227 Residential
0070NW 4	99004424 D0041018	WEST, ROGER SPLIT LOG 9014	09/02/1999	300 115	4	20	Open Hole 20 - 300			2	227 Irrigation
0070NW 4 WILLIAMSON	990004425	WEST, ROGER SPLIT LOG 9014	09/03/1899	240	49 2	20	Open Hole 20 - 240			No.	227 Irrigation
0070NW 5 WILLIAMSON	18700068	SEALES P	01/27/1964	170 165	20	ot Steel	•	Cood	355620	₽2 S	υ <u>η</u>
0070NW 5 WILLIAMSON	18700744	NOLENSVILLE UTILITYD 41A @ 31A			0	Steel		Back		٤	740 Municipal
0070NW 5 WILLIAMSON	18700745	NOTENSVILLE UTILITYD	07/10/1969	160	132	100 Steel	4	Bad	000000	2	212 Municipal
0070NW 5	18701304	HOSSE, GENE SAM DONALD	11/18/1971	913	140	21 Steel	21 - 913	Good		N.	227 Residentiai
OGZONW 5 WILLIAMSON	18701305	HOSSE G.	10/06/1971	298	10	24 Steel	,			£	227 Residential
OCTONW 5	18701448	SMITH	05/02/1975	183 145	60	22 Steel	•	0000	355548	s S	15. Farm
007DNW 5	18701737	SANFORD K.	07/14/1977	125	Ď.	24 Steel		D000	355524 864015	s &	15 Residential
0070NW 5	18702260	VERNON R.	06/17/1981	220	3 80	21 Steel		0000 0000	355610	8 8	1
0070NW 5	18703089	WARREN, MIKE BURKE HOLLOW RD	09/21/1987	200	0 9	20	Open Hole	200 200	355500	No.	227 Residential

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

QUAD / NTH COUNTY	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	TOT DEPTH AQ DEPTH	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LONGITUDE	A / G	ORILLER USE .
0070NW 5 WILLIAMSON	18703091	TANT'S PLANTS NOIENSVILLE RD	09/17/1987	220	9		Open Hole 25 350	Good	355500 864000	ş	15 irrigation
0070NW 5	20011500 D0048563	KLIEN, JEFF 9816 SAM DONALD ROAD	05/26/2001	12D0 830	2.5	20 Galvanized	Open Hole 20 · 1200	Clear 029295	355711 864221	т % 8	227 Irrigation
OOTONW 5	20023765 DD057181	FRIZSELL, DÁN 2610 CLOVER SPRINGS LN	11/07/2002	200	12	25 Galvanized	Open Höle 25 - 200	Cloudy	355456 864753	Kes	227 Residential
0070NW 5	20061459 D0074067	BRADLEY, BETH 9817 SAM DONALD RD	04/05/2006	302 140	8 6	27 Galvanized	Open Hole 27 - 302	Clear .	355703 864226	Yes	227 Irrigation
0070NW 5 WILLIAMSON	92002853	MCCARTNEY, JOHN SAM DONALD R	07/20/1992	330	Ю	Steel Steel	Open Hole 20 - 330	Good	=	No	15 Residential
0070NW 5 WILLIAMSON	94000209 D0000390	MCGEACHY, PAT	01/26/1994	1250	ι ο .	20 Steel	Open Hole 21 - 1250	Cood		§.	15 Residential
OOTONW 5	96002770	WARREN, AMY BURKE HOLLOW RD	06/11/1996 02/23/1999	130		(*)	r	026869	355532 864109	s &	227 Residential
0070NW 5 WILLIAMSON	96002771 D0017283	WARREN, AMY BURKE HOLLOW RD	06/11/1996	38 13	7		Open Hole 12 - 300	500 011305	355524 864115	s &	227 Residential
DOZONW 5	98002772. D0017284	NEAL, DOUG CLOVERCROFT RD	06/13/1996	240	4	165 E	Open Hola 33 · 240	024359	355629 864117	T S	227 Residential
OOZONW 5	99002640 D0036956	TENNESSEASONS 7216 NOLENSVILL	05/30/1999	298 150	76	20	Open Hole 20 · 298	0000		2	727 Irrigation
DOZDNW 5	99004301 D0041035	KLIEN, JEFF 9816 SAM DONALD RD	09/15/1999	562	← 1 2	20	Open Hole 20 562	2 029294	355741	™ δ	227 Irrigation
OUTONW 6 - RUTHERFORD	. 14903077	JUSTICE, PAT JUSTICE	05/30/1986	. 165 18	20	41 Steel	Open Hole 41 - 165	Fair	355500 863730	8	15 Residendal
0070NW 6	18700102	SHELTON J	05/16/1964	146	30 76	24 Steel		Good	355706 863910	s S	219 Residential

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

RECORDS OF WATER WELLS ON THE NOLENSVILLE QUADRANGLE OD70NW TN

1						1	1					_	_
DRILLER USE	219 Other	219 Residential	147 Residential	227 Other	227 Other	227 Residential	15 Residential	15 Residential	- Pa	15 Residential	15 Residential	75 Residential	15 Residentia
A/C 100	s &	S ON	s ≥	% S	s &	w &	S &	S ON	s &	s &	S S	ν S	S S
LATITUDE	355509 863926	355613 863839	355613 863831	355504 863832	355505	355505 863832	355620	355621	355625 863930	355616 863838	355650	555639 863948	355515 863919
WAT QUAL INSP NUMBER		Cood	Good			Good	Good	Good	Good	Cood	C 000	D000	0000
WELL FINISH INTERVAL	٠		7		•	•	•	•	•				
CSE DEPTH CSE TYPE		10 Steel	otes steel	24	24 Steel	Steel	21 Stæel	22 Stael	22 Steel	22 Steel	24 Steel	24 Steel	Steel
TOT YIELD STAT LEVEL	0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	~ R	0	0	240	ĸ	23	15	20	ID.	13	.02
TOT DEPTH AO DEPTH	125	170 155	168	180	425	1454 1452	145	145	120	45	8 8	105 90	280
COMP DATE INSP DATE	10/20/1964	11/09/1964	12/16/1964	07/30/1973	06/23/1973	11/09/1973	04/12/1976	04/12/1976	D1/28/1976	06/11/1976	03/08/1977	05/18/1977	
OWNER'S NAME LOCATION ROAD	ватпе	MCCLAIN	RIDLEY C	RAYE	RAY E	RAYAET J	CREECH H.A.	СКЕЕСН Н.А.	PETTUS, TOM, HWY 31A	LEROD R	WILBURN A.	MCLEMORE R.W.	ROBERTSON GREENHOUSE
-	18700179	18700180	18700196	18701184	18701185	18701232	18701541	18701512	18701514	18701600	18701703	18701706	18701735
QUAD / NTH WELL NUM COUNTY REG NUM	80 S		0070NW 6	ODTONW 6	0070NW 6	0070NW 6 WILLIAMSON	0070NW 6 WILLIAMSON	0070NW 6 WILLIAMSON	0070NW 6 WILLIAMSON	DOZDIVW 6	0070NW 6	0070NW 6 WILLIAMSON	OOTONW 6

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

COUNTY REG NUM	WELL NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот DEPTH АQ DEPTH	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT OUAL INSP NUMBER	LATITUDE	A/C 100	DRILLER USE
9 NOS	18702839	DEAN JR, ROBERT YORK	06/28/1986	207	ž.	20 Steel	Open Hale 20 - 207	Good	355500 863730	S	15 Residential
DGZONW 6	18703070	LAMPLEY, HOMER NOLENSVILLE PK	07/13/1987	310	0 310	41 Steel	Open Hole 41 · 310		355500	2	15 Residential
OOZONW 6	20003677	JOHNSON, KEVIN YORK RD	07/20/2000	265 100	250	411 Street	open Hole 41 · 265	Clear		Yes	15 Residential
ODZONW 6	20004070	BELL, WILLIAM 7524 NOLENSVILLE RD	08/25/2000	240			*3			Yes	227
OOTONW 6	20005086 D0048466	BELL, L D 2500 YORK RD	10/26/2000	280	- 09	22 Galvanized	Open Hole 22 - 280	Clear 045133	355610 863823	Yes	227 Irrigation
DOZDNIV 6 WILLIAMSON	20013545 D0054979	BERR, WILLIAM 7524 NOLENSVILLE RD	08/18/2001	270 255	. S. C.	20 Steel	Open Hale 20 · 270	Clear		Yes	15 Farm
DOZDNIW 6	20031176 D0060222	WILLIAMSON CO PARKS 8 2310 ROCKY FORK RD	& RE 05/29/2003 07/16/2003	180	30	20 Galvanized	Open Hole 20 - 180	Clear) 042601	355715	Yes	227 irrigation
DOTONW 6	20063156 NOTAG356	TVA ROCKY FORK & NEWSON	06/30/2006 NE LI	300			•			Yes	840
DOZONW 6	92000387	ARNOLD, LYNN NOLENSVILLE	03/15/1991	400	4-	20	Open Hole 20 - 400			2	227 Heat Pump
0070NW 6	96005344 D0045738	COBB, JIM YORK RD	11/14/1996	88	0	54	Open Hole 54	183		Yes	
OCTONIV 6 WILLIAMSON	96005345 D0015739	COBB, JIM YORK RD	41/15/1996	145	45	44	Open Hole	rair 145		S	647 Residential
GOZONW 6	99004179 D0039739	WILLIAMS, GRADY	08/51/1999	248	8 16 0 40	20 Stael	Screen	Sulphur 248		8	15 Irrigation
OGZONW 7 WILLIAMSON	. 18700082	SKINNER W	02/13/1964	140	822	Streel		Bad	365252 864328	ss Q	147 Residential

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION • DIVISION OF WATER SUPPLY

QUAD / NTH WELL NUM	WELL NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот оертн Ао оертн	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LONGITUDE	A/C 1.00	DRILLER USE
0070NW 7	18700132	WHITSEY E	07/16/1964	150 58	O SS	5 Steel	â		355237 864437	s S	147 Residential
0070NW 7	18700161	STEPHENS R	08/12/1964	45 32	12 10	20 Steel	•	Good	355435 864238	∞ δ	17
0070NW 7 WILLIAMSON	18700165	STEPHENS R	08/10/1964	100	O				355434 864236	S ON	17 Other
0070NW 7	18700167	STREET M	08/12/1964	190	0	12 Steel			355425 864334	S &	15
0070NW 7 WILLIAMSON	18700168	LAMBT	08/10/1964	100	2	34 Steel	•		355359 864353	s &	15
0070NW 7 WILLIAMSON	18700176	HUGHES D	10/21/1964	.	0		,		355403 864303	S NO	15 Other
DG70NW 7	18700793	ENGLISH A	09/14/1969	247	° 8	30 Staei	• .	Good	355256 864328	s S	227 Residential
0070NW 7	18700858	JENNETTE J	05/19/1970	225	6 40	20 Steel	*	Bad	355254 864330	s No	227 Residential
0070NW 7	18700865	DUNNW	04/21/1970	250	28 42	21 Steel	•	Bad	355247 864416	s &	227 Residential
WILLIAMSON	18700924	SWEENEY, KENNETH MOLLY HOLLOW	09/30/1970	925	220	Steel	21	G00d 925		2	227 Residential
0070NW 7	18701124	ANDERSONRW.	09/29/1973	328	10 56	Z3 Steel	,	0000	355252 864529	s 2 .	15 Residential
0070NW 7	18701172	CHRISTMAN, GARY. WARREN HOLLOW	03/27/1973	1128	240	Steel	1 21 - 1129	Bad 29		S	227 Residential
0070NW 7	18701310	BAILEY; HOWARD BURKE HOLLOW	10/14/1971	1255	486	21 Steel		poog	355415 864314	r 8	227 Residential

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIMSION OF WATER SUPPLY

QUAD / NTH	WELL NUM	QUAD / NTH WELL NUM OWNER'S NAME COUNTY REG NUM LOCATION ROAD	COMP DATE	тот рертн Ас рертн	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT GUAL INSP NUMBER	LATITUDE	A / C 100	DRILLER USE
0070NW 7	18701965	MABRYVL	40/09/1979		0		ě		365458 86442	S ON	227 other
0070NW 7	18701970	SIMMS J	05/30/1979	200	4 130	27 Steel		Bad	355452 864447	s 2	227 Residential
ODZONW 7	18702125	SMITH S.	09/22/1980	160	0		(00)		555427 864455	S S	227 Residential
0070NW 7 WILLIAMSON	18702180	MONTGOMERY C	11,704,71980	100 24	10	Steel	•	Good	3554241	s &	227 Residential
DG7GNW 7	18702517	DUFF, DARYL WARREN HOLLOW	05/01/1984	40	14	24	Operr Hole 24 - 40	0000	355230 864230	8	227 Residential
0070NW 7	18702562	WAGGONER, LJ WAGGONER	07/18/1984	190	100	24	Open Hole 38 - 220		355230	S.	227 Residential
0070NW 7	18702994	JENKINS, RANDY BURKE HOLLOW	03/23/1987	160	0	23	Open Hole 20 - 160		355230 864230	No.	227 Residentiai
0070NW 7	18703115	POWELL, DAVID BURKE HOLLOW	02/26/1988	500	0	46	Open Hole 46 - 500	0	355230	No.	227 Residential
0070NW 7	20030887 D0060206	HERZBERG, DAVID 3086 WILSON PK	03/20/2003	報報	\$ \$	57 Galvanized	Slotted 32 .	Clear 35- 042603	355549 .	₩ Yes	227 Farm
DOZONW 7	20043901 D0066067	CORNERSTONE CONST. 1765 WARREN HOLLOW RD.	12/02/2004	240	40	20 Calvanized		_	355444 864229	Yes	227 Irrigation
0070NW 7	20043902 D0066068	CORNERSTONE CONSTRUCT 12/01/2004 1675 WARREN HOLLOW RD.	CT 12/01/2004 D.	300	\$ 08	20 Calvanized	Open Hole 20 · 300	Clear	355445	Yes	227 Irrigation
0070NW 7	20060561 D0074028	MARYMONT FARMS LADD RD	12/01/2005	75	68 or	Salvanized	Open Hole	Clear	355211 864425	Yes	227 Farm
0070NW 7	20062548	HATCHER, GEORGE 6450 NATHAN SMITH RD	06/13/2006	120	0	24 Calvanized	Open Hole	120	354931	Yes	227 Residential

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

GUAD / NTH WELL NUM COUNTY REG NUM	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот Вертн Ас Вертн	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATITUDE	A/C 100	ORILLER USE
0070NW 7	20062549	HATCHER, GEORGE GASO NATHAN SMITH RD	07/06/2006	320	0					Yes	227 Residential
0070NW 7	95000735	LOSEE, TERRELL HICKORY HILLS D	02/08/1993	520	0	41 Steel	Open Hole 41 - 520			2	647 Residential
0070NW 7	93000736	LOSEE, TERRELL 'HICKORY HILLS R	02/10/1993	155	0	20 Steel	Open Hole 20 - 155			8	647 Residential
0070NW 7	95003878 D0002055	RYANS, GLENN SHAKE RAG RD	06/21/1995	180	5	20	Open Hole 20 - 180			No	227 Residential
OOZONW 7	98002767 D0028724	TURNER, RICK TULLOSS RD	07/13/1998	160	50	8	Open Hole 20 - 160	B_6920	355437	50 S	227 Other
ODZONW 7	98003530 D0028746	SWANSON, REGG BURKE HOLLOW	08/14/1998	202	02 08 02 08	8	Open Hole 20	202 024402	555554 864331	\$ 8	227 Irrigation
DOZONW 7	98005116 D0037353	SWANSON, REDG BURKE HOLLOW	10/26/1998	180		:	a	024401	355354 864327	s o	227 Other
0070NW 7	98005117	SWANSON, REDG BURKE HOLLOW	10/26/1998 01/28/1999	162			4	026917	355354 864330	s S	227 Other
0070NW 7	98005118	SWANSON, RECC BURKE HOLLOW	10/27//1998 01/28/1999	90.05			•	026918	355358 864328	s &	227 Other
0070NW 7	98005128 D0057354	SWANSON, RECG BURKE HOLLOW	10/27/1998	88	40	23	Open Hole	80 024400	355357	u 2	227 -Other
0070NW 8 WILLIAMSON	18700221	PASCHALLS INC	05/14/1965	423	85	ot steel		good	355232	S &	22 Residential
DOTONN 8 WILLIAMSON	18700224 V	PASCHALLS INC	08/02/1965	175	120	Steel	~ =	9000	355243	N _O	22 Residential
0070NW 8 WILLIAMSON	3 18700251	WILLIAMS M	06/15/1965	173	3 20	-12 Steel		Good	355312 864137	s &	324

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIASION OF WATER SUPPLY

QUAD /NTH	QUAD / NTH WELL NUM COUNTY REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	тот D ертн Ао D ертн	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATITUDE	A/C 100	DRILLER USE
0070NW 8	18700706	WITT, FRANK BURKE HOLLOW	8961/01/60	1153	384	22 Steel	*	Cood		2	227 Residential
0070NW 8	18701932	HUSKY 0	04/17/1979	220	o	32 Steel	•		355425 864328	s &	227 Residential
0070NW 8 WILLIAMSON	18701944	HUSKEY G	03/29/1979	365	0	39 Steel	•		355425 864327	S ON	227 Other
DOZONW 8	18702266	WOODSIDE D.	11/23/1981	350	₹1	29 Steel		Bad	355433	S &	15 Residential
0070NW 8 WILLIAMSON	18702663	PARKER JR, SAM BURK HOLLOW	06/28/1985	350	ю	20 Steel	Open Hole 20 . 350	0000	355230	2	15 Residential
OOZONW B WILLIAMSON	18702735	LITTLE, GLENIN SKINNER	11/07/1985	200	9 Q	20	Open Hole 20 - 200		355230 864000	Se .	227 Residential
0070NW 8 WILLIAMSON	18703202	BENDER, CRIS BURKE HOLLOW	06/07/1988	360	7	28	. Open Hole 28 - 360	Good	355230	8	227 Residential
ODZONW 8	16703358	WILLIAMS, JOHN OSBORN	06/28/1989	300	us.	20 Steel	20 - 300	Bad	355230	S	15 Residential
OOTONW 8	20005693 D0048464	OREENLINKS CONST HWY 96 EAST	11/23/2000	280	30	20 Calvanized	Open Hole 20 - 280	Clear		Yes	227 irrigation
0070NW 8 WILLEAMSON	20005694	GREENLINKS CONST HWY 96 EAST	11/24/2000	260	70	20 Calvanized	Open Hole	Clear 260		Yes	227 Irrigation
DDZONW 8	20005695	GREENLINKS CONST HWY 96 EAST	11/25/2000	180				THE PARTY.		Yes	227 Irrigation
OOTONW 8	20005696	GREENLINKS CONST HWY 96 EAST	11/25/2000	160						Yes	227 : Irrigation
OOTONW 8	20005697	GREENLINKS CONS HWY 96 EAST	11/26/2000	240	0					Yes	227 i Irrigation

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

COUNTY	WELL NUM REG NUM	OWNER'S NAME LOCATION ROAD	COMP DATE	ТОТ ВЕРТН АО ВЕРТН	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATITUDE	A/C 100	DRILLER Use
0070NW 8	20005698 D0048485	GREENLINKS CONST HWY 96 EAST	11/26/2000	180 60	100	20 Galvanized	Open Hole 20 180	Clear		Yes	227 Irrigation
OOTONW B	20005689	CREENLINKS CONST HWY 96 EAST	11/30/2000	120 40	10		¥			Yes	227 Irrigation
ODTONW 8	20005700 D0048486	GREENLINKS CONST HWY 96 EAST	12/01/2000	180	50	24 Gatvanized	Ореп Hole 24 · 180	Clear		Yes	227 Irrigation
OOTONW 8	20005781	GREENLINKS CONST HWY 96 EAST	11/22/2000	300	0.5	Ĭ	1	:		Yes	227 Irrigation
0070NW 8 WILLIAMSON	20021595 D0057112	HAILEY, JAMES 2275 OSBORNE RD	08/06/2002	140	e Se	20 Galvanized	Open Hole 20 - 140	Clear		Yes	227 Irrigation
DOZDNW 8	90001268	SCRUGGS III JAMES WARREN HOLLOW	04/17/4990	1 6 0	۲	20	Open Hole 20 · 160	Sulphur		No	227 Residential
DOZDINW 8	91003656	MASON, BRENTBKIRS SKINNER	09/18/1991				.*			Ñ	227 Residential
DOZONW 8	94003341 D0000423	MCGEE, PARKER BUNKER HILL DR	08/08/1994	207	16	20 Steel	Open Hole 21 - 207	Good 011167	355243 864231	πS	15 Residential
0070NW 8 WILLIAMSON	95004443 D0015635	SHADY CK EMU FARM NOLENSVILLE RD7683	09/19/1895	105 30	e 6	20	Open Hole 20 - 105	Good 015752	355346	₽ 8	647 Well
DOTONW 8	97005301 D0026323	CAMPBELL, KEVIN SKINNER	10/27/1997	1127 1086	12	20 Steel	Open Hole 20 1127	Good		S.	15 Residential
0070NW 8	99000572 D0030802	WILLIAMS, DON ROBERTS RD	01/11/1999	207	35	20 Steel	Open Hole 20 - 207	Fair		No	15 Residential
0070NW 8	99003470 D0041006	OWENS, THOMAS OSBORN RD	08/11/1999	120	10	8	Open Hole 20 - 120			No	227 ***** Other
DOZONW 8	99005927	BLANKENSHIP, FRANK VALLEY FORGE	41/48/1999	282	23 53	8	Open Hole 20 - 282	81		8	227 Other

12/12/2006

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

	2				ന	4						2	9
1	Well 2	ĺ	-	Ì	Well 3	Well 4			1	1		Well 5	Well 6
DRILLER USE	15. Residential	437 Residentlal	755 Residentiai	227 Residential	15 Residential	15 Residential	15 Residential	15 Residential	227 Residential	227 Heat Pump	15 Residential	227 Residential	15 Residential
A/C L00	S ON	2	2	8	s S	s &	s &	Ş	S	S	r Xes	ω . S	# S
LATITUDE LONGITUDE	355419 863746	355230 863700			355457 863835	355452 863941	355424 863738	355230 863730	355230 863730	355230 863730	355248 863924	355349 863829	355302 863746
WAT QUAL INSP NUMBER				Good	Good	poop	Cood	Fair		0	Cloudy 0 045137	le 1140 026957	026988
WELL FINISH INTERVAL		open Hole 41 - 330	50 - 978	20 - 1151		• .	•	Open Hole 20 - 400	Open Hole	Open Hole 96 - 460	Open Hole 41 - 410	Open Ho	
CSE DEPTH CSE TYPE	42 Steel	41 Steel	20	20 Steel	Steel	24 Steel		20 Steel	99	96	41 Steel	20	
TOT YIELD STAT LEVEL	2	1 80	1 258	2 190		4	2	-	30	\$ B8	12 30	2	
TOT DEPTH AQ DEPTH	178	330 125	978	1151	370	80	1210	400	400	460	410	1140	370
COMP DATE INSP DATE	07/48/1978	03/17/1989	05/11/1965	11/20/1973	11/30/1977	04/26/1977	09/25/1978	03/11/1986	06/04/1986	03/10/1986	04/27/2000	04/04/1995	08/22/4996
OWNER'S NAME LOCATION ROAD	HARVEY C. D.	HILL, CHARLES MT	PARKER, JAMES. MCCANLESS	MARTIN, ED MCCANLESS	BROWN R	TARPLEYT	PERRY	TATE, JOE MCCLANLES RD	HORNER, JOHN SPANN TOWN	MAYPIELD, BUD 31A-41A	CLAWSON, STEVE 2935 BOSTICK RD	COULSON, CARL PUCKETT	ALLEN, DAVID HENRY ALLEN LN
WELL NUM REC NUM	14902146	14903447	18700350	18701233	18701605	18701726	18701857	18702831	18702853	18702888	20002134 D0045477	95001535 D0010972	96003897
COUNTY REC NUM	0070NW 9 RUTHERFORD	007GNW 9 RUTHERFORD	0070NW 9	0070NW 9 WILLIAMSON	0070NW 9 WILLIAMSON	0070NW 9	OGZONW 9 WILLIAMSON	0070NW 9 WILLIAMSON	0070NW 9	0070NW 9	ODTONW 9	0070NW 9 WILLIAMSON	0070NW 9 WILLIAMSON

12/12/2006

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION - DIVISION OF WATER SUPPLY

QUAD / NTH	COUNTY REGINUM	OWNER'S NAME LOCATION ROAD	COMP DATE	TOT DEPTH TOT YIELD AQ DEPTH STAT LEVEL	TOT YIELD STAT LEVEL	CSE DEPTH CSE TYPE	WELL FINISH INTERVAL	WAT QUAL INSP NUMBER	LATITUDE	A/C 106	A/C DRILLER LOG USE	
0070NW 9	10700W 9 97003145 WILLIAMSON D0026268	ROBBINS, JOHIN OLD HORTON HWY	07/10/1997	207	25	20 Stæel	20 Open Hole Good 381 20 - 207 026982	Good 026982	355250 863936	s &	15 Well 7	7
0070NW 9 9	007GNW 9 95004857 WILLIAMSON D0039750	GRAHAM, SCOTT NOLENSVILLE RD	09/17/1999	1209	ьn	20 Steel	20 Open Hole (eel 20 1209 (Good 026437	355436 863904	ıl S	15 Well 8 Residential	<u></u>

1.7 Centralized Wastewater Treatment / Disposal (CWTD) Evaluation

a. Identify potential CWTD service area (topographic maps of area adjacent to the proposed project.):

The area surrounding the proposed project consists of mostly larger tract properties that would tend to lend themselves to the development of residential subdivisions, if wastewater service were available. Some of these properties have one or more existing residences that consume large portions of those properties. It can be assumed that all of these existing residences are on septic systems. The drainage basin for this area flows to the southwest, to the Harpeth River. The property does not lie in any Urban Growth Boundary (UGB). Existing sewer collection lines for centralized treatment are not within 1 mile of the proposed Treatment Facility.

b. Evaluation of the Facility for providing a CWTD system in the service area. (Nature and extent of the area to be served, including immediate and probable future development).

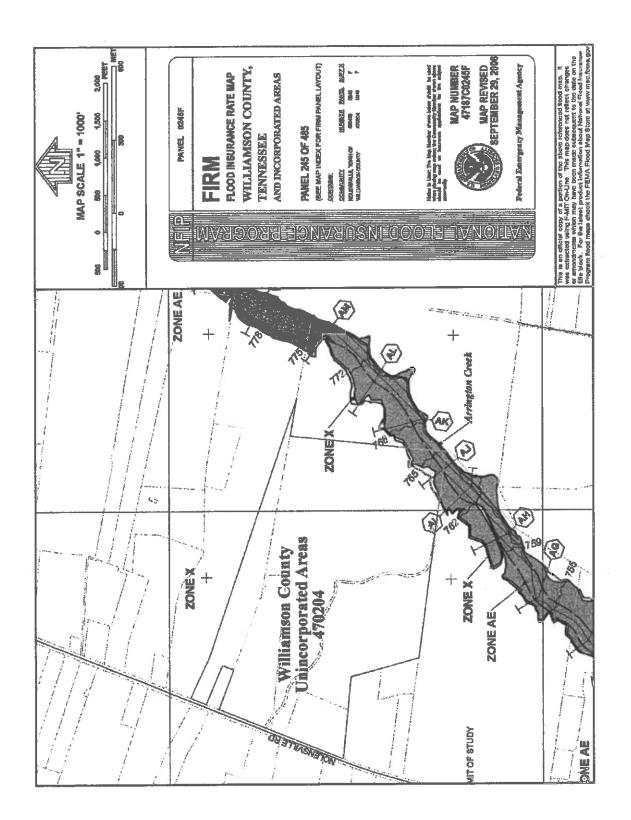
The Nolensville-Dove Lake Treatment Facility currently is a farm that is in the jurisdiction of Williamson County Department of Sewage Disposal Management. The developer's plan of development is to build on approximately 20 to 30 lots per year until built out. The developer is anticipating 5 – 8 years completing the proposed subdivision, depending on the market demands. The developer's long range plans are to provide approximately 162 residential lots / homes at this location. The proposed Treatment Facility is designed to treat the domestic effluent from approximately 165 residential lots.

The proposed project site basically has no additional capacity to provide sewer services to adjacent properties, without additional expansion. The capacity of the Nolensville-Dove Lake Treatment Facility will be designed to accommodate approximately 165 residential units at 300 gallons per day per unit (49,500 gpd). Typically, design flows do not represent actual flows for a treatment facility, and additional capacity should be expected to accommodate nearby potential subsurface sewage disposal system failures. The suitable soils available at Nolensville-Dove Lake Treatment Facility are dedicated to serve this proposed development, leaving no additional treatment capacity at the current design load requirements.

It does not appear that this particular site would be suitable for a Centralized Wastewater Treatment/Disposal facility, using the current proposed treatment technology (RSF with drip dispersal), as there is no additional land area available.

c. Summary, conclusion and plan of service regarding the potential CWTD systems within the identified service area.

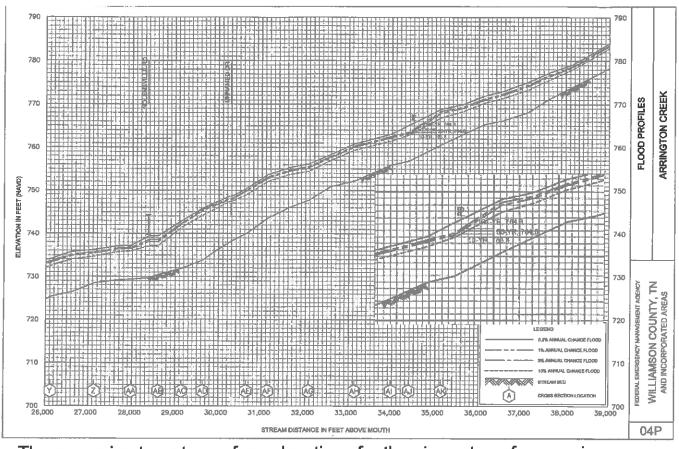
The area adjacent to and in the vicinity of the proposed Nolensville-Dove Lake Treatment Facility has the potential to experience further residential growth. The planned use of the proposed project does not lend itself to the expansion of the system under current regulations to accommodate such growth. It does not appear that a larger CWTD would be suitable for this property. However, some additional service could be accommodated after build-out, and a determination of remaining available capacity is determined based on usage history. (See attached Engineering Report for additional information.)


The proposed wastewater treatment facility will consist of a recirculating sand filter that will treat approximately 49,500 gpd. In addition, there will be recirculating and final dose tanks, and a disk filter. Once treated, the effluent will be dispersed by drip dispersal. 100% reserve area will be provided for the drip dispersal.

The Treatment Facility UIC / SOP permit has been applied for with TDEC. This SOP will be used for treating effluent from Enclave at Dove Lake. A letter of service from Tennessee Wastewater is inserted below.

	39	

- 2. Scaled drawing with 2 foot elevation contours showing the preliminary site layout including:
 - 2.1 Pre-application treatment facilities See site and grading plans
 - 2.2 Storage Facilities See site and grading plans
 - 2.3 Disposal Fields See site and grading plans
 - 2.4 Buffer Zones See site and grading plans
 - 2.5 Hand auger, test pit and soil boring locations See site and grading plans
 - 2.6 Access roads and utilities See site and grading plans
 - 2.7 Watercourses See site and grading plans
 - 2.8 Drainage structures See site and grading plans
 - 2.9 Flood elevations with 10 year, 50 year, and 100 year flood plain elevation noted
 - See site and grading plans


Exhibit 2.9a

FEMA FIRMETTE

Discharges for Arrington Creek for the 10 year (10-Percent Annual Chance), 50 year (2-Percent Annual Chance), and 100 year (1-Percent Annual Chance) floods are published by FEMA. The approximate water surface elevation for each of those recurrence intervals are shown below at the downstream property line.

Exhibit 2.9b

The approximate water surface elevations for the given storm frequencies are as follows at the downstream property line:

10-Yr. 763.4+/-50-Yr. 764.0 +/-100-Yr. 764.3 +/-

- 2.10 Residences and habitable structures within or adjacent to site
 See site and grading plans
- 2.11 Wells within 500' of the site

See site and grading plans. Also, see 1.6 Water supply wells within 1,500 LF of facility for TDEC well location map. No wells are known to be within 500 feet of the proposed Treatment Facility.

t ⊚			
	2		

3. Design wastewater characteristics (influent to pre-application treatment and treated effluent to disposal fields). If the project involves an existing facility, then actual, recent data should be used:

WASTEWATER TREATMENT SYSTEM DESIGN SPECIFICATIONS

SITE: Nolensville-Dove Lake Treatment Facility – Nolensville, TN 37135

A recirculating sand filter is proposed to treat the effluent from the development's residences. The system shall consist of the following components: A watertight septic tank and pump at each lot, a collection forcemain delivering septic tank effluent from all lots to a recirculating sand filter, a final storage tank, disk filters, and finally to a subsurface drip irrigation system by means of a forcemain.

The system shall be capable of treating the daily design wastewater flow with the following maximum influent characteristics.

Raw Influent

Effluent

3.1 Average and peak daily flows

Design flow (gpd)	49,500	49,500
Min. WW Temp. (C)	13.	
pH	3-4	6.5-8.5

(Note: Average flow from existing watertight collection systems is approximately 160 to 180 gpd per house. Average flow is approximately 29,700 GPD.)

Design peak flow for the collection: 165 houses X 0.50 gpm/house = 82.5 GPM

3.2 Biochemical Oxygen Demand

BOD5 (mg/L) (Septic Tank)	200-300	120-150
BOD5 (mg/L) (RSF)	120-150	< 5
BOD5 (mg/L) (Drip Field)	<5	-

3.3 Total Suspended Solids

155 (m		
g/L) (RSF)	80-120	< 5
TSS (mg/L)	<5	BDL

3.4 Ammonia Nitrogen, Total Kjeldahl Nitrogen, Nitrate plus Nitrite

30-5	-
40-60	-
<2	
<15	
<1	
<20	
A supplemental alkal	inity/pH feed system shall be
	<0-60 <2 <15 <1 <20

		70	

3.5 Total Phosphorus

Normal waste streams are between 4 mg/l TP in the influent.

Effluent <2 mg/l

3.6 Chloride

Chloride concentrations influent to the recirculating sand filter are approximately 30 mg/l. Effluent to drip dispersal would be approximately <10 mg/l

3.7 Sodium Absorption Ratio

(Na+1)/(sqr((Ca+2+Mg+2)/2))

Range 5-9(a)

3.8 Electrical Conductivity

Permeability Range < 0.5 mho/cm

Salinity Range < 0.75-3.0 mmho/cm

3.9 Metals / Priority Pollutants

Chloride and heavy metal concentrations are important to a treatment plant and process but it is uncommon for them to be outside of the generally accepted ranges unless the waste water is from a unique industrial operation. These values should be within the typical range specified in Tennessee.

	78		

- 4. Water Balance / determination of design wastewater loading rates for each disposal field:
 - The <u>Armour series</u> consists of very deep well drained soils on stream terraces, foot slopes, and valley floors. These soils formed in old alluvium, valley fill, or in alluvium and the underlying residuum of limestone. Slopes range 0 to 20 percent. TAXONOMIC CLASS: Fine-silty, mixed, active, thermic Ultic Hapludalfs.
 - 2. The <u>Captina series</u> consists of very deep, moderately well drained soils on nearly level to moderately sloping uplands and old stream terraces of the Ozark Highlands. They formed in a thin mantle of silty material and the underlying colluvium and residuum weathered from limestone, cherty limestone and dolomite, or siltstone. Slopes range from 1 to 15 percent. Mean annual temperature is 56 degrees F., and mean annual precipitation is 45 inches. TAXONOMIC CLASS: Fine-silty, siliceous, active, mesic Typic Fragiudults.
 - 3. The <u>Culleoka series</u> consists of moderately deep, well drained, soils formed in colluvium or residuum from siltstone or interbedded shale, limestone, siltstone, and fine grained sandstone. Slope ranges from 2 to 70 percent. Near the type location the mean annual precipitation is about 47.5 inches and mean annual air temperature is about 54.7 degrees F. TAXONOMIC CLASS: Fine-loamy, mixed, active, mesic Ultic Hapludalfs.
 - 4. The <u>Hampshire series</u> consists consists of deep, well drained, soils on uplands. These soils formed in clayey residuum of interbedded limestone and shale and the underlying residuum of interbedded siltstone, fine grained sandstone, shale and limestone. Slopes range from 2 to 30 percent. TAXONOMIC CLASS: Fine, mixed, active, thermic Ultic Hapludalfs.
 - 5. The <u>Maury series</u> consists of very deep, well drained, moderately permeable soils that formed in silty material over residuum weathered from phosphatic limestone. These soils are on uplands. TAXONOMIC CLASS: Fine, mixed, active, mesic Typic Paleudalfs.
 - 6. The <u>Stiversville</u> series consists of deep, well drained permeable soils on uplands. They formed mostly in residuum of siltstone and fine grained sandstone that is interbedded with shale and limestone. On steep slopes, some pedons formed partly in colluvium from the same material. Slopes range from 2 to 30 percent. TAXONOMIC CLASS: Fine-loamy, mixed, active, thermic Ultic Hapludalfs.
 - 7. See DSIR, page 12, Item 6.0, Determination of Design Percolation for Each Soil Type. The average "perc" for the soils used was found to be 0.45 in/hr.

8.	Nitrogen E	Balance/selection	of cover	crop and	management scheme
----	------------	-------------------	----------	----------	-------------------

The E	nclave	at Dove	Lake	Subdivision
	Wi	lliamsoı	Coun	ty

NITROGEN LOADING

USING MASS BALANCE EQUATION

Ä				
10.00	Lwn	=		Allowable Loading rate based on Nitrogen Limits
	$\mathbf{C}_{\mathbf{p}}$	=	10	maximum nitrogen concentration (mg/l)
1	Pr	=	table(Chap. 16)	5-year return monthly precipitation, in/mon.
	PET	=	table(Chap. 16)	potential evapotranspiration, in/mon. (From Chap. 16)
	U	- 90	100	nitrogen uptake by vegetation (lbs N/acre/year)
9	$\mathbf{C}_{\mathbf{n}}$	=	23	nitrogen concentration in applied wastewater
7000	f	=	Varies	fraction of applied nitrogen rem. by denitrif, and volatiliz.
T-101-1	constant	=	4.424	combined conversion factor
1				

Nutrient Loading Rate = Lwn = $(C_n((PR)-PET))+U(4.424)/(((1-f)*C_n)-C_p)$

				ŀ	%	Lwn	Lwn	Lwn	
	Pr	PET	U(%/mo)	U/mo	Denitr.	in/mo	in/wk	gal/sf/day	
January	7.62	0.10	1	1.0	25	11.09	2.59	0.23	
Feb	6.72	0.27	2	2.0	25	10.12	2.36	0.21	
Mar	8.85	0.97	4	4.0	27	14.39	3.36	0.29	
Apr	6.59	2.30	8	8.0	29	12.27	2.86	0.25	
May	6.13	3.59	12	12.0	31	13.24	3.09	0.27	
Jun	5.52	4.90	15	15.0	33	13.39	3.12	0.27	
July	6.85	5.44	17	17.0	35	17.72	4.13	0.36	
August	4.73	5.00	15	15.0	35	12.86	3.00	0.26	
Sept	5.54	3.79	12	12.0	34	13.81	3.22	0.28	
Oct	4.47	1.98	8	8.0	32	10.56	2.46	0.21	
Nov.	6.11	0.82	4	4.0	29	11.06	2.58	0.23	
Dec.	7.55	0.27	2	2.0	26	11.46	2.67	0.23	

6. Background Groundwater Samples

No wells are located on the project site, but based on the past sampling, expected values would be:

Fecal Coliform: 0/100 ml Nitrate as N: 0.06 mg/l

7. Phosphorus and Other Constituent Loading Rates Not a parameter requirement for the SOP.

Normal waste streams are between 8 and 12 mg/l TP in the influent and we would normally use about 25% of that for cell growth in the biofilm.

Effluent 5-6 mg/l

Constituent loading rates will be typical for residential domestic waste.

8. Determination of Wetted Field Area(s) and Required Storage Volume Area for Drip Irrigation

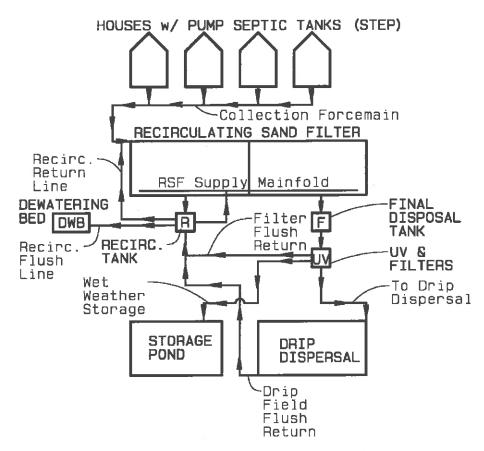
The total area required for drip irrigation at the design flow of 49,500 gpd will be as follows:

	1 440 500 15			
T. 4-1 O. U. A.	LA16:F33and F		- L December	
lotal Soils Ar	ea Required (L		n + Keserve	•)
	Maximum	Drip Dispersal		
	Application Rate	Backup		
	gal/sf/day	Soils Area		
Tennessee Wastewater	0.2	50%		
Williamson County	0.25	100%		
TDEC	0.25	0%		
		-		
	_	Allowed	Application	Rates
Land Application Area		TENNESSEE WASTEWATER SYSTEMS, INC. (All Soils with 50% Backup)	Williamson County (Stiversville Soils, 100% backup)	TDEC (Stivessville Soils, No Backup Required)
Land Application Area	gal/sf/day	0.2	0.25	0.25
Primary Area Required	s.f	247500	198000	198000
Backup Area Required	s.f.	123750	198000	0
Total Area Required	s.f.	371250	396000	198000
OF	acres	8.52	9.09	4.55

Therefore, using the largest area, at least 9.09 acres will be provided for land application and reserve area.

Storage Pond Volume

Tennessee Department of Environment and Conservation does not require redundant storage, however, Williamson County requires 40 days of storage.


. The total storage calculations are simply the ability to store water that would have been applied during these days. **Storage Volume = 40 days effluent**

Effluent volume generated for those 40 days = 300 gpd/res. X 165 res. X 40 days / 7.48 gal/CF / 43,560 SF/Ac= **6.08 ac-ft.**

Pond Depth = 15 ft., Surface Area = 0.4 Ac. average Volume = 6.08 Ac-ft.

- 9. Process design for pre-application treatment facility.
- 9.1 Schematic of pump stations and unit processes

Exhibit 9

WASTEWATER PROCESS SCHEMATIC

9.2 Basin volumes, loading rates, hydraulic detention times, etc. (aerobic or anaerobic).

Collection system will be septic tank effluent with pump vault and filter at each residence to pressure collection mains to deliver effluent through force mains to a recirculating sand filter system. A final dose pump system will pressurize the drip system and/or deliver water to the storage pond. Pump curves and calculations are attached.

	8		

9.3 Capacity of all pumps, blowers and other mechanical equipment. Pump curves and hydraulic calculations for the distribution system must accompany the DDR.

Drip Irrigation Field Sizing:

5.68 acres = 247,500 SF TDEC requires Laterals to be placed on 2 ft. centers 247,500 SF/2' centers = 123,750 LF of drip line Divide drip system into 28 zones of 4,420 LF each

Typical zones will have a maximum of 16 distal ends.

<u>Design dose flow</u> (See Engineering Report) = 4,420 ft / 2' c.c. emitters x 0.61 GPH/emitter/60 min./Hr = 22.47 gpm, use **23 gpm**

<u>Design Flush Flow</u> (See Engineering Report) Flush Flow Required = **25 gpm**

The system will use two (2) pumps to dose and flush the drip fields. One 4,420 LF zone will be dosed at a time (10 cycles). Both pumps will run at the same time to does and flush the drip line.

Design calculations for the sand filter and drip irrigation are subject to final layout and design. Sand filter pumps are based on typical sand filters of similar size.

9.4 Design life of treatment and disposal system

The design life of treatment and disposal system is expected to be 50 years.

	10. Detailed Soil	s Investigation Re	eport	
*			35	3
				ı
				56

LONNIE NORROD SOIL CONSULTING

ENCLAVE AT DOVE LAKE DSIR

Big Oak Rd. (Williamson County TN tax map #85, parcel #1.01

4-8-2015

Section 20.07

DETAILED SOILS INVESTIGATION REPORT

1.0 Site Description

- 1.1 Location Map
- 1.2 Topographic map
- 1.3 Soil Survey map
- 1.4 Hand auger, test pit and soil boring locations
- 2.0 Soil series descriptions (each soil series present)
 - 2.1 Texture
 - 2.2 Permeability
 - 2.3 Slope
 - 2.4 Drainage
 - 2.5 Depth to seasonal high water table
 - 2.6 Depth to bedrock
 - 2.7 Erodibility
- 3.0 Soil characteristics (each soil series present)
 - 3.1 Hand auger, test pit and soil boring logs:
 - 3.1.1 Soil horizons
 - 3.1.2 Depth to groundwater
 - 3.1.3 Depth to rock
 - 3.2 Unified Soil Classification
 - 3.3 Results from saturated hydraulic conductivity testing
 - 3.4 Results from soil chemistry testing
 - 3.4.1 pH
 - 3.4.2 Cation Exchange Capacity
 - 3.4.3 Percent Base Saturation
 - 3.4.4 Sodium Exchange Potential
 - 3.4.5 Phosphorus Adsorption
 - 3.4.6 Nutrients (N, P, K)
 - 3.4.7 Agronomic trace elements (for cover crop proposed)
 - 3.4.8 Mineralogy (clay)
 - 3.5 Engineering properties of soils proposed for any potential pond construction
- 4.0 Identification of subsurface conditions adversely affecting vertical or lateral drainage of the and treatment site.
- 5.0 Delineation of soils and areas suitable and not suitable for wastewater drip or spray irrigation.
- 6.0 Determination of design percolation for each soil type.

APPENDICES

APPENDIX 1.2 - TOPOGRAPHIC MAP AND EXTRA-HIGH INTENSITY SOIL MAP GSM

APPENDIX 1.3 – NRCS SOIL SURVEY MAP

APPENDIX 2.0 - SOIL SERIES DESCRIPTIONS (OSD)

APPENDIX 2.7 – ERODIBILITY CHART

APPENDIX 3.1 - SOIL PEDON DESCRIPTIONS

APPENDIX 3.3 - RESULTS FROM Ksat TESTING

APPENDIX 3.4 - RESULTS FROM SOIL CHEMISTRY TESTING

GLOSSARY OF ABBREVIATIONS:

LNSC- Lonnie Norrod Soil Consulting (Mr. Lonnie Norrod)

GSM - Gibi Soil Mapping (Mr. John Gibi)

NRCS - Natural Resource Conservation Service

Ksat-Saturated Hydraulic Conductivity

TDEC – Tennessee Dept of Enviornment and Conservation

DSIR - Detailed Soils Investigation Report

WCTZO- Williamson County Tennessee Zoning Ordinance

OSD - U.S.D.A. Natural Resources and Conservation Service Official Soil Descriptions

SEC Inc. - Site Engineering Consultant's

Detailed Soil Investigation Report

INTRODUCTION:

The Following is a Detailed Soil Investigation Report (DSIR) prepared by Lonnie Norrod Soil Consulting (LNSC) for Enclave at Dove Lake Subdivision located on Big Oak Rd. Nolensville, TN. The DSIR data was collected and compiled in accordance with the requirements set forth in Section 20.07 of Article 20: "Nontraditional Wastewater Treatment and Disposal Systems" of the Williamson County, Tennessee Zoning Ordinance (WCTZO) adopted May 14, 2012. The data in this report was collected and is presented in a form that will best reflect its application to a wastewater treatment system that utilizes drip dispersal technology as its means of application into the ground. The state of Tennessee Department of Environment and Conservation (TDEC) has the authority to permit the system and has specific guidelines and requirements concerning drip dispersal in "Chapter 17: Design Guidelines for Wastewater Dispersal Using Drip Irrigation". Any reference to soils being favorable or unfavorable for drip dispersal in this report is based on the guidelines set forth in TDEC's "Chapter 17". "Chapter 17" assigns the hydraulic loading rate of soils for drip dispersal on the most restrictive soil characteristics in the upper 20" of the soil profile. For this reason, much of the field data in this report is focused on that zone of the soil profile.

The soil mapping and soil pedon descriptions were performed by Mr. John Gibi of Gibi Soil Mapping (GSM). Mr. Gibi was accompanied by Mr. Terry Henry of TDEC for most of the pedon descriptions. Hydraulic conductivity testing, research data collection, and soil sample collection was performed by LNSC. The soil samples were collected and sent to Waters Agricultural Laboratories, Inc. 2101 Calhoun Rd. Hwy 81 Owensboro, KY. 42301 for soil chemistry testing and particle size determinations. The hydraulic conductivity testing was done by utilizing a Compact Constant Head Permeameter called the Amoozemeter developed by Dr. Aziz Amoozegar.

Please contact Lonnie Norrod of Lonnie Norrod Soil Consulting at 615-969-4443 with any questions concerning the contents of this DSIR.

DETAILED SOIL INVESTIGATION REPORT

General Geology of the site:

The area that this DSIR was performed on is located near the boundary of the outer portion and the inner portion of the Nashville Basin Physiographic Region. The residuum of these soils in the higher elevations is weathered from the phosphatic limestones, siltstones, and shale of the Bigby-Cannon and Hermitage formations. These geologic formations are made up of hills and ridges that have moderately steep to steep slopes and gently rolling or sloping ridgetops. In the lower elevations, the Carter's Formation is present. The Carter's underlies the Hermitage Formation and consists of non-phosphatic limestone. The Carter's landscape is mostly hilly and undulating. The contact between the inner and outer portions of the Nashville Basin is widely accepted as the boundary between the Hermitage Formation and the Carter's Formation. The entire geology of this site is of the Ordovician Period.

1.0 Site Description:

1.1 Location Map:

1.2 Topographic Map:

-The Topographic Map was provided by SEC Inc. See Appendix 1.2 for a "to scale" version of the topo map and the soil map produced by GSM.

1.3 Soil Survey Map:

See Appendix 1.3 for the NRCS Soil Survey Map

- 1.4 Hand Auger, test pit and soil boring locations:
- -Hand auger holes and/or tractor auger holes were bored by GSM at appropriate intervals in order to create soil map. These locations are marked on the field copy of the map and are not included on the final map.
- -Sixteen test pits were excavated and Soil Pedon descriptions were performed at these locations by GSM and Terry Henry of TDEC which are numbered and marked on the soil map displayed in Appendix 1.2.
- 2.0 Soil series descriptions (each soil series present)
- -The Soil Pedon Descriptions in Appendix 3.1 make a note of all of the following physical characteristics noted below in this section. Only the soils considered favorable for drip dispersal were described in the Pedon Descriptions
- -The NRCS Official Soil Series Descriptions (OSD)s of all the soil series present are displayed in Appendix 2.0.
 - 2.1 Texture
 - 2.2 Permeability
 - 2.3 Slope
 - 2.4 Drainage
 - 2.5 Depth to seasonal high water table
 - 2.6 Depth to bedrock
 - 2.7 Erodibility
- -Appendix 2.7 displays a table with estimated Erodibility
- 3.0 Soil Characteristics (each soil series present)
 - 3.1 Hand auger, test pits and soil boring logs:
- --Hand auger holes and/or tractor auger holes were bored by GSM at appropriate intervals to complete the soil map. The soil series and any special notes about the physical characteristics of the soil at these locations were noted in short hand on the field copy of the soil map. The field copy is not included in this report but was utilized in compiling the final soil map that is included in this report in Appendix 1.2. The soil map and soil pedon descriptions provided by GSM show no water table present in any of the soil areas being utilized for drip irrigation with the exception of the Lindell unit. GSM encountered a layer with low chroma mottles and depletions at a depth of 24" according to the soil pedon descriptions.

It is likely that a water table exists in these areas during the wettest periods of the year at the depth in which the low chroma mottles and depletions are present. Soil pedon description #7 reflecst this phenomenon.

-Sixteen test pits were excavated and Soil Pedon descriptions were performed at these locations which are numbered and marked on the soil map displayed in Appendix 1.2.

3.2 Unified Soil Classification (USC): This data is compiled from NRCS Web Soil Surveys

SoilSeries	Depth In Inches:	Unified Soll Classification	
Armour	0-7	CL, CL-ML, ML	
	7-65	CL	
Egam	0-11	CL, CL-ML, ML	
	11-72	CH, CL	
Hampshire	0-10	CL-ML, CL, ML	
	10-30	CL, CH, MH	
	30-49	CL, GC, SC, GM	
Harpeth	0-9	CL, CL-ML, ML	
<u> </u>	9-65	CH, CL, MH, ML	
Lindell	0-6	CL, CL-ML, ML	
	6-60	CL, CL-ML	
Marsh	0-3	CL, CL-ML, ML	
	3-19	CL, CL-ML, ML	
	19-23	CL, GC, GM, ML	
Mimosa	0-6	CL, ML	
	6-11	ML, CL, MH, CH	
	11-55	CH, MN	
Pruitton	0-6	CL	
	6-34	CL	
	34-29	sc	
Stiversville	0-6	CL, CL-ML, ML	
	6-50	CL, CL-ML, ML	
	50-55	CL, GC, SC, SM	

Reference: Web Soil Survey. Soil Survey Staff, National Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/

The following is a chart that describes the Abbreviations of the USC system from Wikipedia:

First and/or second letters

Second letter

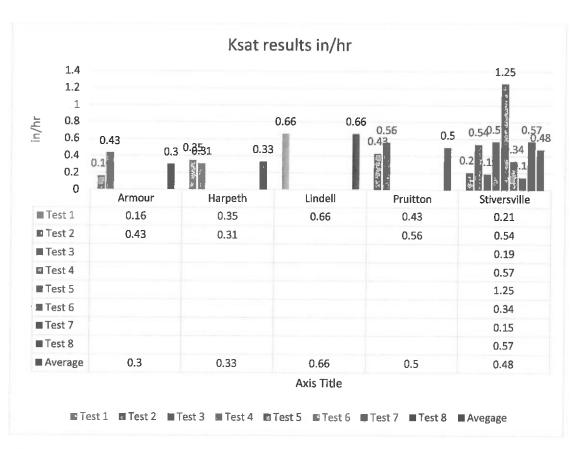
Letter	Definition
G	gravel
S	sand
M	silt
С	clay
0	organic

Letter	Definition
P	poorly graded (uniform particle sizes)
W	well-graded (diversified particle sizes)
Н	high plasticity
L	low plasticity

3.3 Results from saturated hydraulic conductivity (Ksat) testing:

-The results from the saturated hydraulic conductivity testing are displayed in Appendix 3.3. These tests were conducted utilizing an Amoozemeter. The tests were ran at approximately 20" deep because TDEC assigns a hydraulic loading rate to a soil based on its most limiting characteristics in the upper 20" of the soil profile. There is at least two hydraulic conductivity test for each soil series present that is considered favorable for drip dispersal with the exception of the Lindell soil which only has one. All of the Ksat averages for the soil series present that are mapped in the areas that are considered favorable for drip dispersal fall in the "moderately slow" and "moderate" hydraulic conductivity classes as designated by the following chart from the NRCS Web Soil Survey:

Saturated Hydraulic Conductivity


Saturated Hydraulic Conductivity in Relation to Soil Texture

Saturated hydraulic conductivity rates shown are in relation to texture and are only a general guide. Differences in bulk density may after the rates shown below.

Soil Textural Classes & Related Saturated Hydraulic Conductivity Classes

Texture	Textural Class	General	Ksat Class	in/hr
Coarse sand	Coarse	Sandy	V. rapid	>20
Sands	Coarse	Sandy	Rapid	6 to 20
Loamy sands				
Sandy loam	Mod. coarse	Loamy	Mod. Rapid	2 to 6
Fi.san.loam				
v, fi. sa.	Medium	Loamy	Moderate	0.6 to 2
loam toam	N A			
silt loam				
silt				
clay loam	Mod. fine	Loamy	Mod. slow	0.2 to 0.6
sa. cl.				
loam si. cl.				
sandy clay	Fine and	Clayey	Slow	0.06 to 0.2
silty	very fine			
clay clay				
Cd horizon Natric horizon, fragipan, ortstein			V. slow or impermeable	0 to 0.06

Reference: Web Soil Survey. Soil Survey Staff, National Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/

-The Ksats for the soils series in the preceding chart are and average of the readings from the Amoozemeter once the water flow from the auger hole had reached a "steady state".

3.4 Results from soil chemistry testing

-The soil samples were taken from the field by LNSC and sent to Waters Laboratories for testing. The results of this testing is displayed in Appendix 3.4.

3.5 Engineering properties of soils proposed for any potential pond construction

-The engineering criteria for the clay liner of a stabilization pond are as follows:

Clay Content: 40 to 70%

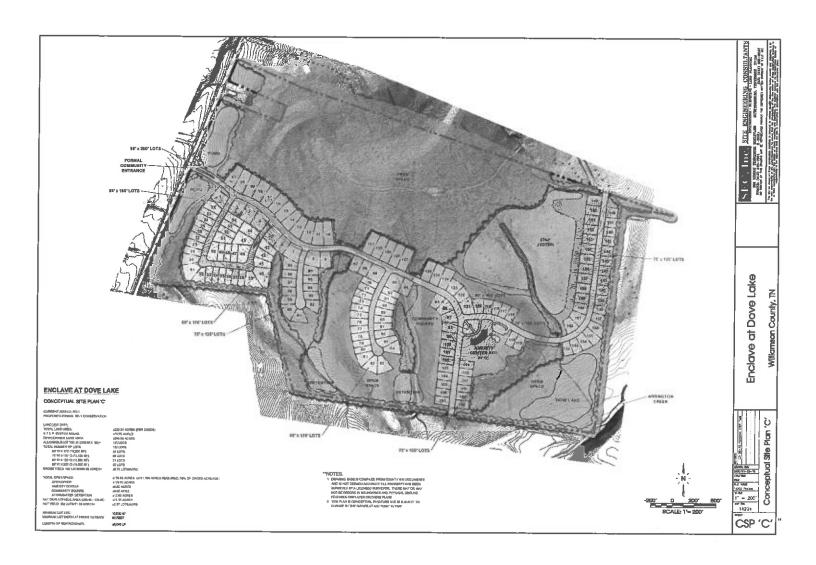
Permeability: 1*10(-7) to 1* 10(-6) cm/sec

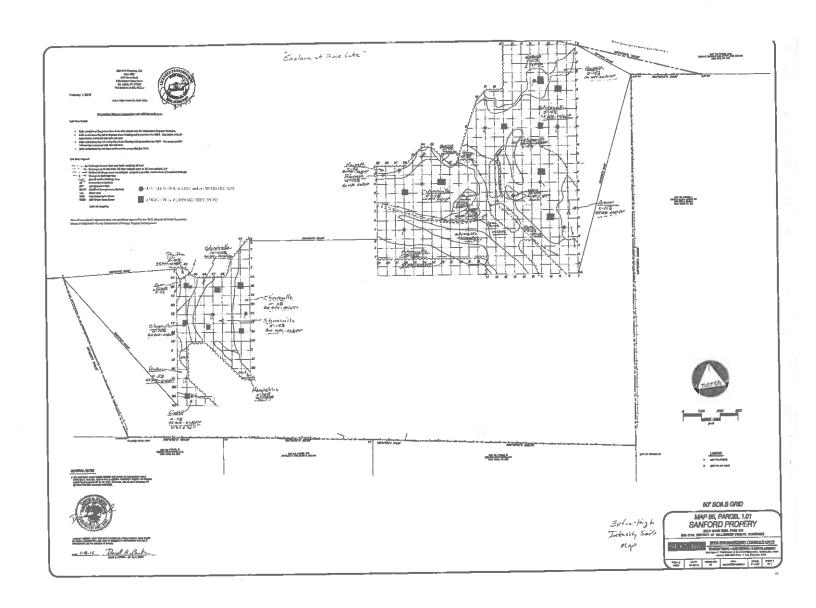
Plasticity: 21 Plasticity Index

Consistency: medium stiff to stiff

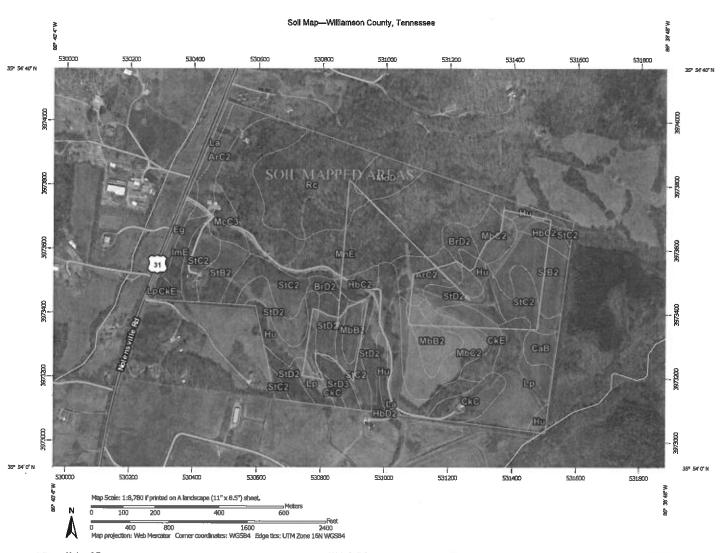
-As indicated by the soil map prepared by GSM and the Williamson County Soil Survey, there are significant amounts of clayey soils on the property. Potential areas of clay will be benchmarked as they are encountered during the construction process and will be unearthed and utilized for the pond liner. If there is an insufficient amount of clay on the property that meets the design criteria, clay will be hauled in to the site or a PVC liner will be purchased for the lining of the pond.

- 4.0 Identification of subsurface conditions adversely affecting vertical or lateral drainage of the land treatment site:
- A subsurface condition contacted that would adversely affect the vertical or lateral drainage of the land treatment site would be the seasonable high water table which is indicated by the low chroma depletions that were encountered by GSM at a depth of 24". This is recorded in Soil Pedon Descripton #7 which is located near grid point NN-50. The seasonable high water table appears to be limited to the Lindell soil series unit based on the soil map and the soil pedon descriptions. The seasonable high water table in the Lindell soil does slow down the drainage of water but it is not likely that it would significantly slow down the drainage in the zone of the drip dispersal lines. The drip lines will be installed around 8" deep and the water table is over a foot below that depth. TDEC currently is not requiring a soil improvement practice such as a sub-surface drain to lower the water table or intercept water prior to it entering the treatment area for soils that do not have a water table less than 20". No clay textures or bedrock were observed less than 39" in any of the soil pedon descriptions by GSM. Nor are there any notes on the soil map that indicate any problems of shallow rock or clay textures that would significantly adversely affect vertical or lateral drainage in the boundaries within the designated area of the land treatment site.
- 5.0 Delineation of soils and areas suitable and not suitable for wastewater drip or spray irrigation:
- -All soils mapped Armour, Harpeth, Lindell, Pruitton or Stiversville with 15% or less slopes are areas that are considered suitable for wastewater drip according to the guidelines set forth in TDEC's "Chapter 17" and Williamson County's criteria for advanced wastewater treatment. Any of the soils mapped Egam, Marsh or Mimosa are considered not suitable for wastewater drip at this time. The Marsh soil is normally considered suitable for drip dispersal, but it exceeds the maximum slope limit of 15% for drip dispersal in Williamson County in this case. The Stiversville units that are mapped in excess of 15% are also considered unsuitable for drip dispersal according to Williamson Counties criteria for advanced wastewater treatment systems.


6.0 Determination of design percolation for each soil type:


-According to the Ksat data collected, the following chart reflects the percolation rate for each soil series considered suitable for drip dispersal

Soil Series	Pércolation Rate (In/hr) (average of at léast two tests in each series)		
Armour	0.30		
Harpeth	0.33		
Lindell	0.66		
Pruitton	0.50		
Stiversville	0.48		
Was was the contract of the co	0.75		


APPENDIX 1.2

TOPOGRAPHIC MAP AND EXTRA HIGH INTENSITY SOIL MAP BY GSM

APPENDIX 1.3 NRCS SOIL SURVEY MAP

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800. Area of Interest (AOI) Spoil Area Area of Interest (AOI) ۵ Stony Spot Warning: Soil Map may not be valid at this scale. Soils 0 Very Stony Spot Enlargement of maps beyond the scale of mapping can cause Soil Map Unit Polygons misunderstanding of the detail of mapping and accuracy of soil line ø Wet Spot Soil Map Unit Lines placement. The maps do not show the small areas of contrasting Other Δ soils that could have been shown at a more detailed scale. Soil Map Unit Points • 00 Special Line Features Special Point Features Please rely on the bar scale on each map sheet for map Water Features Blowout measurements. (0) Streams and Canals __ Borrow Pit Source of Map: Natural Resources Conservation Service 531 Transportation Web Soll Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Clay Spot 300 Rails +++ 0 Closed Depression Interstate Highways Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the × Gravel Pit U\$ Routes **Gravelly Spot** 9 Major Roads Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. 0 Landfill Local Roads This product is generated from the USDA-NRCS certified data as of Lava Flow ٨ Background the version date(s) listed below. عليه Marsh or swamp 457 Aerial Photography Soll Survey Area: Williamson County, Tennessee Survey Area Data: Version 10, Aug 28, 2014 衆 Mine or Quarry Ö Miscellaneous Water Soil map units are labeled (as space allows) for map scales 1:50,000 Ö Perennial Water Rock Outcrop Date(s) serial images were photographed: Mar 17, 2011—Jul 2, + Saline Spot The orthophoto or other base map on which the soil lines were 50 Sandy Spot compiled and digitized probably differs from the background Imagery displayed on these maps. As a result, some minor shifting Severely Eroded Spot ellikof map unit boundaries may be evident. 0 Sinkhole 35 Slide or Slin Sodic Spot

Map Unit Legend

Williamson County, Tennessee (TN187)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
ArC2	Armour silt loam, 5 to 12 percent slopes, eroded	10.9	5.0%		
BrD2	Braxton cherty silt loam, 12 to 20 percent slopes, eroded	3.4	1.6%		
СаВ	Captina silt loam, phosphatic, 2 to 5 percent slopes	2.5	1.1%		
CkC	Culleoka silt loam, 5 to 12 percent slopes	5.4	2.5%		
CkE	Culleoka silt loam, 20 to 35 percent slopes	5.5	2.5%		
Eg	Egam silt loam, phosphatic	2.1	1.0%		
HbC2	Hampshire silt loam, 5 to 12 percent slopes, eroded	4.9	2.3%		
HbD2	Hampshire silt loam, 12 to 20 percent slopes, eroded	0.0	0.0%		
Hu	Huntington silt loam, phosphatic	12.9	6.0%		
ImE	Inman flaggy silty clay loam, 20 to 30 percent slopes, eroded	2.6	. 1.2%		
La	Lanton silt loam, phosphatic	1.6	0.7%		
Lp	Lindell silt loam, 0 to 2 percent slopes, occasionally flooded	13.8	6.4%		
MbB2	Maury silt loam, 2 to 5 percent slopes, eroded	6.8	3.1%		
MbC2	Maury silt loam, 5 to 12 percent slopes, eroded	13.5	6.2%		
McC3	Maury silty clay loam, 5 to 12 percent slopes, severely eroded	3.2	1.5%		
MnE	Mimosa-Rock outcrop complex, 20 to 40 percent slopes	40.9	18.8%		
MoD	Mimosa and Ashwood very rocky soils, 5 to 20 percent slopes	4.5	2.1%		
Rc	Rockland	21.8	10.1%		
SrD3	Stiversville clay loam, 12 to 20 percent slopes, severely eroded	2.3	1.0%		
StB2	Stiversville silf loam, 2 to 5 percent slopes, eroded	12.8	5.9%		
StC2	Stiversville silt loam, 5 to 12 percent slopes, eroded	20.7	9.5%		

Williamson County, Tennessee (TN187)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
StD2	Stiversville silt loam, 12 to 20 percent slopes, eroded	25.0	11.5%			
Totals for Area of Interest		217.0	100.0%			

APPENDIX 2.0 OFFICIAL SOIL DESCRIPTIONS

LOCATION ARMOUR

TN+AL KY

Established Series Rev. RPS/DLN/JLN 04/2011

ARMOUR SERIES

The Armour series consists of very deep well drained soils on stream terraces, foot slopes, and valley floors. These soils formed in old alluvium, valley fill, or in alluvium and the underlying residuum of limestone. Slopes range 0 to 20 percent.

TAXONOMIC CLASS: Fine-silty, mixed, active, thermic Ultic Hapludalfs

TYPICAL PEDON: Armour silt loam - cultivated. (Colors are for moist soil unless otherwise stated.)

Ap--0 to 8 inches, dark brown (7.5YR 3/2) silt loam; weak fine granular structure; very friable; many fine roots; moderately acid; clear smooth boundary. (5 to 10 inches thick)

A--8 to 17 inches, brown (10YR 4/3) silt loam; weak medium granular structure; friable; many fine roots; few angular fragments of chert; few fine black concretions; moderately acid; gradual smooth boundary. (0 to 8 inches thick)

Bt1--17 to 23 inches, brown (7.5YR 4/4) silty clay loam; weak fine and medium subangular blocky structure; friable; common fine roots; few faint clay films on faces of peds; few angular fragments of chert; few fine black concretions; moderately acid; gradual smooth boundary.

Bt2--23 to 48 inches, brown (7.5YR 4/4) silty clay loam; moderate medium subangular blocky structure; friable; few to common fine roots; common distinct clay films on faces of peds; few angular fragments of chert; common fine black concretions; strongly acid; clear smooth boundary.

Bt3--48 to 58 inches, reddish brown (5YR 4/4) silty clay loam; weak medium subangular blocky structure; friable; few fine distinct black stains on faces of peds and in pores; common distinct clay films on faces of peds; few angular fragments of chert; common fine black concretions; strongly acid; gradual smooth boundary. (Combined thickness of the Bt horizon is 30 to 55 inches)

BC--58 to 75 inches, mottled reddish brown (5YR 4/4), strong brown (7.5YR 5/6), and light yellowish brown (10YR 6/4) silty clay loam; weak medium angular blocky structure; friable; few angular fragments of chert; strongly acid.

TYPE LOCATION: Williamson County, Tennessee; about 1 mile north of Franklin, Tennessee, on U.S. Highway 31; 1/4 mile south of Harpeth River Bridge on U.S. Highway 31; 300 feet east of U.S. Highway 31.

RANGE IN CHARACTERISTICS: Solum thickness ranges from 40 to more than 80 inches. Depth to limestone bedrock is greater than 5 feet. Reaction is moderately acid or strongly acid except the surface layer is less acid where limed. Fragments of gravel or chert range from 0 to 10 percent in the upper 40

inches. The fragments range up to about 3 inches in diameter. Below 40 inches the fragment content is dominantly 0 to 35 percent, but ranges to 60 percent.

The A or Ap horizon has hue of 7.5YR or 10YR, value of 3 or 4, and chroma of 2 to 4. Texture is silt loam except a few severely eroded areas are silty clay loam.

Some pedons have a transitional horizon between the A and Bt horizons.

The Bt horizon has hue of 5YR, 7.5YR, or 10YR, value of 4 or 5, and chroma of 4 or 6. Some pedons have few to common mottles in shades of brown, yellow or red. Texture of the fine earth is dominantly silt loam or silty clay loam but includes loam below 40 inches.

The BC and C horizons, where present, have the same colors and textures as the Bt horizon. Some pedons developed in limestone residuum below 48 inches and have 2Bt, 2BC or 2C horizons. These horizons have a hue of 5YR to 2.5Y, value of 4 or 5 and chroma of 4 to 8. Mottles are in shades of brown, yellow, red, or gray. Texture of the fine earth is silty clay loam, clay loam, silty clay, or clay.

COMPETING SERIES: These are the Barnsdale, <u>Dexter, Dossman, Goodwill</u> and <u>Hicks</u> series in the same family and the closely related <u>Ashton, Elk, Sandhill</u> and <u>Stiversville</u> series. <u>Barnsdall</u> and <u>Dexter soils</u> are free of fragments and have less clay and more sand in the lower part of the solum and C horizon. Dossman soils formed in thick deposits of loess on dissected uplands and have a lower sand content in the control section. Goodwill soils have more sand in the lower B horizon. Hicks soils developed in a loess mantle and residuum of interbedded sandstone, siltstone and shale on upland ridgetops. Rippable bedrock is at 40 to 60 inches from the surface. Ashton soils are moderately acid to neutral and are mesic. Elk soils have a lighter colored surface layer and are mesic. Sandhill and Stiversville soils are fine-loamy and have bedrock at 40 to 60 inches from the surface.

GEOGRAPHIC SETTING: Armour soils are on stream terraces, foot slopes, and valley floors. Slopes range from 0 to 20 percent. These soils formed in old alluvium, valley fill, or in alluvium and the underlying clayey residuum of limestone. Near the type location, mean annual temperature is 59 degrees F. and average annual precipitation is 47 inches.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the competing <u>Hicks</u> and <u>Stiversville</u> series, and the <u>Braxton</u>, <u>Hampshire</u>, <u>Inman</u>, <u>Maury</u>, <u>Sengtown</u>, <u>Byler</u>, <u>Tarklin</u>, <u>Humphreys</u>, <u>Hawthorne</u>, and <u>Mimosa</u> series. The Braxton, Hampshire, Inman, Maury, and Sengtown soils are on uplands and are clayey. The Byler and Tarklin soils are on stream terraces and have a fragipan. Humphreys soils are on foot slopes and stream terraces and are fine-loamy. Hawthorne soils are on uplands and are loamy-skeletal.

DRAINAGE AND PERMEABILITY: Well drained; medium runoff; moderate permeability.

USE AND VEGETATION: Most of the areas are cleared and used for pasture, hay, small grain, tobacco, and corn. The native vegetation was mixed hardwoods including oaks, hickory, elm, hackberry, maple, beech, black walnut, ash, locust, yellow-poplar, and red cedar.

DISTRIBUTION AND EXTENT: The Nashville Basin and Highland Rim in Tennessee and the inner bluegrass region of Kentucky. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Morgantown, West Virginia

SERIES ESTABLISHED: Maury County, Tennessee; 1955.

REMARKS: Diagnostic horizons recognized in this pedon are:

Ochric epipedon - 0 to 17 inches (Ap, A horizons)

Argillic horizon - 17 to 58 inches (Bt horizon)

National Cooperative Soil Survey U.S.A.

LOCATION EGAM

TN+AL AR KY VA

Established Series Rev. RPS:JCJ 04/2001

EGAM SERIES

The Egam series consists of very deep, well drained or moderately well drained soils that formed in clayey alluvium on flood plains and in depressions. Slopes are dominantly less than 2 percent but range from 0 to 5 percent.

TAXONOMIC CLASS: Fine, mixed, active, thermic Cumulic Hapludolls

TYPICAL PEDON: Egam silty clay loam--pasture. (Colors are for moist soil.)

Ap--0 to 7 inches; dark brown (10YR 3/3) silty clay loam; moderate medium granular structure; friable; many fine roots; moderately acid; clear smooth boundary. (6 to 10 inches thick)

A--7 to 22 inches; very dark grayish brown (10YR 3/2) silty clay loam; strong medium angular blocky structure, some medium prismatic structure that parts to angular blocky; firm; many fine roots; moderately acid; gradual smooth boundary. (6 to 30 inches thick)

Bw1--22 to 39 inches; very dark grayish brown (10YR 3/2) silty clay, few fine faint grayish brown mottles; weak medium prismatic structure parting to strong medium angular blocky; very firm; common fine roots largely between peds, few fine roots within peds; pressure faces on some peds; slightly acid; gradual smooth boundary. (0 to 30 inches thick)

Bw2--39 to 56 inches; dark brown (10YR 4/3) silty clay;strong medium angular blocky structure; firm; common fine roots; pressure faces on some peds; common fine and medium faint dark grayish brown (10YR 4/2) redox depletions; slightly acid; gradual smooth boundary.

Bw3--56 to 75 inches; brown (10YR 4/3) silty clay loam;moderate medium angular blocky structure; firm; few fine roots;common medium and fine faint dark grayish brown (10YR 4/2) redox depletions; slightly acid. (Combined thickness of the Bw horizon below the mollic epipedon ranges from 20 to 55 inches)

TYPE LOCATION: Davidson County, Tennessee; Tennessee State University farm; northwest corner of farm, 200 feet south of Cumberland River and 150 feet west of rock fence.USGS topo Quad: (unknown), latitude: (unknown); longitude (unknown).

RANGE IN CHARACTERISTICS: Depth to bedrock is greater than 60 inches. Thickness of the mollic epipedon ranges from 24 to 55 inches. Reaction is neutral to moderately acid in the A and B horizon, below about 50 inches it ranges from moderately alkaline to moderately acid.

The A horizon has hue of 10YR, value of 2 or 3, and chroma of 2 or 3. Some pedons have a few faint gray and brown mottles in the lower part. Texture is dominantly silty clay loam or silt loam but a few pedons are loam or silty clay.

The upper part of the Bw horizon is part of the mollic epipedon and in some pedons has colors like the A horizon. Below this, the Bw horizon has hue of 7.5YR to 2.5Y, value of 4 or 5 and chroma of 3 to 6. Redox features is shades of brown or gray are few to common and those with chroma 1 or 2 range from none to common.

Below about 50 inches, the Bw horizon or C horizon, where present, has hue of 7.5YR to 2.5Y, value of 4 to 6 and chroma of 1 to 6. Redox features are in shades of brown and gray and some pedons are mottled without a dominant matrix color. Texture is dominantly silty clay loam, silty clay or clay, but some pedons range to clay loam or coarser.

COMPETING SERIES: These are the <u>Frioton</u> series in the same family. Similar soils are the <u>Agee</u>, <u>Arrington</u>, <u>Bowdre</u>, <u>Cannon</u>, <u>Catalpa</u>, <u>Godwin</u>, <u>Lanton</u>, and <u>Staser</u> series in closely related families. Frioton soils have free carbonates in the solum. Arrington soils are fine-silty and Cannon and Staser soils are fine-loamy. Bowdre and Catalpa soils have mollic epipedons less than 20 inches thick. Agee, Godwin, and Lanton soils are more poorly drained. They have distinct or prominent gray mottles in the mollic epipedon or dominantly gray colors just below the mollic epipedon.

GEOGRAPHIC SETTING: Egam soils are on flood plains and in depressions. Slopes are most commonly 0 to 2 percent and range from 0 to about 5 percent. The soil formed in fine-textured alluvium. Near the type location average annual air temperature is about 59 degrees F., and average annual precipitation is about 47.3 inches.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the similar <u>Arrington</u>, <u>Agee</u>, <u>Godwin</u>, <u>Lanton</u>, and <u>Staser</u> series and the <u>Lynnville</u> series which is fine-silty.

DRAINAGE AND PERMEABILITY: Well drained or moderately well drained; slow runoff; moderately slow permeability. Most areas are flooded for very brief periods. The flooding is rare to frequent.

USE AND VEGETATION: Nearly all areas are cleared and used chiefly for growing corn, soybeans, cotton, hay, and pasture. The original vegetation was hardwood forest, chiefly of oaks, maple, elm, gums, ash, sycamore, beech, and hickory.

DISTRIBUTION AND EXTENT: Nashville Basin and Great Valley regions of Tennessee, northwestern Georgia, northern Alabama, Arkansas, and Kentucky. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Morgantown, West Virginia

SERIES ESTABLISHED: Lincoln County, Tennessee; 1938.

REMARKS: Diagnostic horizons recognized in this pedon are: Mollic epipedon - 0 to 39 inches (Ap, A, Bw1 horizons) Cambic horizon - 39 to 75 inches (Bw1, Bw2, Bw3 horizons)

LOCATION HAMPSHIRE

TN+KY

Established Series Rev. RPS 04/2001

HAMPSHIRE SERIES

The Hampshire series consists of deep, well drained, soils on uplands. These soils formed in clayey residuum of interbedded limestone and shale and the underlying residuum of interbedded siltstone, fine grained sandstone, shale and limestone. Slopes range from 2 to 30 percent.

TAXONOMIC CLASS: Fine, mixed, active, thermic Ultic Hapludalfs

TYPICAL PEDON: Hampshire silt loam--pasture. (Colors are for moist soil unless otherwise stated.)

Ap--0 to 7 inches; brown (10YR 4/3) silt loam; moderate medium granular structure; friable; many grass roots; strongly acid; clear wavy boundary. (5 to 9 inches thick)

Bt1--7 to 12 inches; brown (7.5YR 4/4) silty clay loam; moderate medium and fine subangular blocky structure; firm; common faint clay films on faces of peds; many fine roots; few soft fragments of shale; strongly acid; clear wavy boundary. (3 to 7 inches thick)

Bt2--12 to 24 inches; strong brown (7.5YR 5/6) clay; moderate medium and fine subangular blocky structure; firm; many distinct clay films on faces of peds; few small soft and hard fragments of shale and limestone most of which are coated with clay films; few roots; strongly acid; gradual wavy boundary. (8 to 15 inches thick)

Bt3--24 to 30 inches; strong brown (7.5YR 5/6) clay; moderate medium and fine subangular blocky structure; firm; many distinct clay films on faces of peds; few soft and hard fragments of shale and limestone; few fine roots; strongly acid; clear wavy boundary. (Combined thickness of the Bt horizon ranges from 25 to 45 inches)

2Bt4--30 to 40 inches; strong brown (7.5YR 5/6) clay loam; moderate medium subangular blocky structure; firm; few faint clay films on faces of peds; 15 percent by volume of soft fragments of sandstone and siltstone and a few hard fragments of limestone; few roots; strongly acid; clear wavy boundary. (0 to 10 inches thick)

2C--40 to 47 inches; strong brown (7.5YR 5/6) very channery loam; massive; friable; 60 percent soft and hard, flat fragments of sandstone, siltstone and limestone up to 10 inches across strongly acid; clear smooth boundary. (0 to 12 inches thick)

2Cr--47 to 60 inches; interbedded sandstone, siltstone and limestone. Weathered bedrock that is rippable and can be dug with a spade except for some hard strata.

TYPE LOCATION: Dekalb County, Tennessee; 1 mile southeast of Alexandria, in northwest corner of Lawrence farm.

RANGE IN CHARACTERISTICS: Solum thickness ranges from 30 to 50 inches and depth to bedrock

ranges from 40 to 60 inches. Fragments of rock range from 0 to 15 percent in the A and Bt horizons, 10 to 50 percent in the BC and C horizons where present, 5 to 20 percent in the 2Bt horizon, and 25 to 75 percent in the 2C horizon. Reaction ranges from medium acid to very strongly acid. Phosphate content is medium or high.

The Ap horizon has hue of 10YR, value of 4 or 5, and chroma of 3 to 6. The chroma of 6 is in severely eroded areas. It is dominantly silt loam, but ranges to silty clay loam in severely eroded areas.

Some pedons have a transitional horizon between the A and Bt horizons.

The Bt horizon has hue of 10YR or 7.5YR, value of 4 or 5, and chroma of 4 to 8. Some pedons are mottled with shades of brown and yellow in the middle and lower parts. It is clay, silty clay, silty clay loam or clay loam. Clay content of the control section is dominantly 40 to 45 percent, but ranges from 35 to 55 percent.

A lithologic discontinuity is not a requirement of the series. Where present, the BC and C horizons have hue of 10YR or 7.5YR, value of 4 or 5, and chroma of 4 to 8. The fine earth texture ranges from loam to clay.

The 2Bt horizon has the same colors as the Bt horizon. The fine texture is clay loam, silty clay loam or clay.

The 2C horizon has hue of 10YR or 7.5YR, value of 4 or 5, and chroma of 4 to 8. Mottles are in shades of brown, yellow, and gray. The fine earth fraction is loam, silt loam, clay loam, or silty clay loam.

The 2Cr horizon is interbedded siltstone sandstone, shale and limestone. The weathered bedrock is rippable and in most places can be dug with a spade, but it includes some thin strata that is hard. Most of the rock was calcareous prior to weathering and some strata contains phosphate nodules.

COMPETING SERIES: These are the Brantley, Canton Bend, Capshaw, Cowton, Enon, Gundy, Maben, Magnet, Mecklenburg, Meth, Spray, and Zion series in the same family and Mimosa, Needmore and Talbott series in similar families. Brantley and Enon soils are deeper than 60 inches to bedrock. Canton Bend, Gundy, Maben, Magnet and Mecklenburg soils have hues of 5YR or redder in the B horizon. Capshaw soils have gray mottles in the B horizon. Cowton and Needmore soils have rippable bedrock at a depth of 40 to 60 inches. Meth soils have a solum greater than 60 inches thick. Mimosa soils have a solum less than 20 inches thick. Talbott soils have hue of 5YR or redder in the major part of the B horizon. Zion soils have hard bedrock at a depth of 20 to 40 inches.

GEOGRAPHIC SETTING: Gently sloping to steep uplands. Slopes range from 2 to 30 percent. These soils formed in clayey residuum of interbedded limestone and shale the underlying residuum of interbedded siltstone, fine grained sandstone and limestone. Near the type location, the average annual air temperature is 60 degrees F. and the average annual precipitation is about 52 inches.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the competing Mimosa soils and the Hicks, Inman, Dowellton and Sandhill and Stiversville series. Hicks soils formed partly in a loess mantle and are fine-silty. Inman soils are 20 to 40 inches to bedrock and are flaggy. Dowellton soils have gentle slopes and are poorly drained. Sandhill soils are fine-loamy and are flaggy. Stiversville soils are fine-loamy.

DRAINAGE AND PERMEABILITY: Well drained; moderately slow permeability; medium to rapid runoff.

USE AND VEGETATION: Most areas are cleared. Much of the soil is in pasture and hay, but some is used for growing corn, small grains, and tobacco. The native vegetation is forests of oaks, walnut, locust, ash, hickory, beech, elm, and maple.

DISTRIBUTION AND EXTENT: The Central Basin in Tennessee. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Morgantown, West Virginia

SERIES ESTABLISHED: Maury County, Tennessee; 1954.

REMARKS: Diagnostic horizons and features recognized in this pedon are:

Ochric epipedon - The zone from 0 to 7 inches (Ap horizon)

Argillic horizon - The zone from 7 to 40 inches (Bt horizon)

Paralithic contact - at 47 inches (top of Cr horizon)

LOCATION HARPETH

ΤN

Established Series Rev. DEL:JLP 04/2001

HARPETH SERIES

The Harpeth series consists of very deep, well drained, moderately permeable soils on high terraces and uplands. They formed in loess and alluvium over residuum from limestone. Slopes range from 2 to 12 percent.

TAXONOMIC CLASS: Fine-silty, mixed, active, thermic Typic Paleudalfs

TYPICAL PEDON: Harpeth silt loam - pasture. (Colors are for moist soil)

Ap-0 to 7 inches; brown (l0YR 4/3) silt loam; weak fine granular structure; friable, many fine roots; many fine tubular pores; strongly acid; abrupt smooth boundary. (6 to 16 inches thick)

BA--7 to 15 inches; strong brown (7.5YR 4/6) and brown (10YR 4/3) silt loam; weak fine granular structure parting to weak fine subangular blocky; friable; many fine roots; many fine tubular pores; few fine iron-manganese concretions; medium acid; clear smooth boundary.

Bt1--15 to 25 inches; strong brown (7.5YR 4/6) silt loam; weak fine and medium subangular blocky structure; friable; common fine roots; many fine tubular pores; few faint clay films on faces of peds; few fine iron-manganese concretions; slightly acid; clear smooth boundary.

Bt2--25 to 35 inches; strong brown (7.5YR 4/6) silt loam; moderate fine and medium subangular blocky structure; friable; few fine roots; many fine tubular pores; common distinct clay films on faces of peds; common fine iron-manganese concretions; slightly acid; clear smooth boundary. (Combined thickness of the Bt ranges from 20 to 60 inches or more.)

2Bt3--35 to 49 inches; strong brown (7.5YR 4/6) clay loam; moderate fine and medium subangular blocky structure; friable; few fine roots; many fine tubular pores; common distinct clay films on faces of peds; common fine iron-manganese concretions; about 1 percent by weight pebbles of mixed sedimentary rocks 2 to 5 mm in diameter; slightly acid; gradual smooth boundary.

2Bt4--49 to 65 inches; strong brown (7.5YR 4/6) clay loam; many medium faint strong brown (7.5YR 5/6) mottles; moderate medium subangular blocky structure; firm; few fine roots; common fine tubular pores; common distinct clay films on faces of peds; common fine iron-manganese concretions; about 1 percent by weight pebbles of mixed sedimentary rocks 2 to 5 mm in diameter; slightly acid.

TYPE LOCATION: Sumner County, Tennessee; west of Gallatin, 2.0 miles west along Long Hollow Pike from intersection of State Highway 25 and Long Hollow Pike, 200 feet north of road and 150 feet east of private drive.

RANGE IN CHARACTERISTICS:

Solum thickness and depth to limestone bedrock are more than 60 inches. Most pedons have a lithologic

discontinuity however, this is not a requirement for the series. Content of fragments of gravel range from 0 to 10 percent in the A and Bt horizons and from 0 to 15 percent in the 2Bt horizons. This soil is slightly acid to strongly acid except the surface layer is less acid where limed. Most pedons have transition horizons with colors and textures similar to adjacent horizons.

The Ap horizon has hue of 10YR or 7.5YR, value of 3 or 4 and chroma of 4. Some pedons have surfaces layers less than 7 inches thick with hue of 10YR or 7.5YR, value of 3 and chroma of 2 or 3.

The Bt horizons have hue of 7.5YR or 5YR, value of 4 or 5 and chroma of 4 or 6. They are silt loam or silty clay loam. Some pedons contain few to common brownish mottles.

The 2Bt horizon has hue of 10YR, 7.5YR, or 5YR, value of 4 or 5 and chroma of 4 or 6. They are clay loam or silty clay loam except in some pedons, below about 48 inches, texture includes silty clay or clay. Most pedons contain few to common brownish mottles.

COMPETING SERIES: These are the <u>Atwood</u>, <u>Lexington</u> and <u>Sykes</u> series in the same family and the <u>Armour</u>, <u>Crider</u>, <u>Kamie</u>, <u>Macon</u>, <u>Peridge</u> and <u>Ryker</u> series. Atwood soils formed in marine or fluvitile sediments in the Southern Coastal <u>Plains</u>. Armour and Lexington soils have argillic horizons that decrease in clay content by 20 percent or more of the maximum within 60 inches of the soil surface. Crider, Peridge and Ryker soils are mesic. Kame and Macon soils are fine-loamy. Sykes soils have clayey discontinuities with moderately slow permeability within 48 inches of the surface.

GEOGRAPHIC SETTING: Harpeth soils are on nearly level to rolling high stream terraces and uplands. The soil formed in a silty mantle (presumably loess) 2 to 3 feet and underlying old loamy alluvial deposits. In many places this is underlain by clayey limestone residuum. Commonly slopes are complex and convex and range from 0 to 12 percent. Near the type location the average annual air temperature is about 58 degrees F and the average annual precipitation is about 48 inches.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the competing <u>Armour</u> and <u>Sykes</u> series and the <u>Barfield</u>, <u>Byler</u>, <u>Inman</u>, and <u>Mimosa</u> soils. Barfield and Inman soils, at similar elevations on nearby uplands, are clayey and are less than 40 inches deep to rock. Byler soils, on stream terraces at lower elevations, have a fragipan and are moderately well drained. Mimosa soils, on adjacent and nearby uplands, are clayey.

DRAINAGE AND PERMEABILITY: Well drained; moderate permeability; medium runoff.

USE AND VEGETATION: Nearly all areas are cleared and used for growing row crops, pasture and hay. Crops commonly grown are corn, soybeans, tobacco, small grains and alfalfa. The native vegetation was mixed hardwoods such as oaks, hickories, beech, sweetgum and popular.

DISTRIBUTION AND EXTENT: The Nashville Basin in Tennessee. The series is of small extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Morgantown, West Virginia

SERIES ESTABLISHED: Rutherford County, Tennessee, January 1974.

REMARKS: In the past, the Harpeth soils were included with the Pembroke, Maury and Armour series in Tennessee. The site of the original Official Series Description is on the University of Tennessee Middle Tennessee Experiment Station

in Maury County, Tennessee. The area is mapped in the Maury series in the 1952 published soil survey of Maury County.

Diagnostic horizons and features recognized in this pedon are:

Ochric epipedon - from the surface of the soil to about 7 inches (Ap horizon).

Argillic horizon - from about 7 inches to about 65 inches (BA, Bt1, Bt2, 2Bt3, 2Bt4 horizon

ADDITIONAL DATA: Particle size and chemical data on this pedon was provided by the National Soil Survey Laboratory in Lincoln, Nebraska in 1986. (S85TN-165-001).

LOCATION LINDELL

TN+KY

Established Series Rev. JCJ 04/2001

LINDELL SERIES

The Lindell series consists of very deep, moderately well drained soils on floodplains. The soil formed in loamy alluvium. Slopes range from 0 to 3 percent.

TAXONOMIC CLASS: Fine-loamy, mixed, active, thermic Fluvaquentic Eutrudepts

TYPICAL PEDON: Lindell silt loam, on level first bottom, in hay. (Colors are for moist soil).

Ap--0 to 7 inches; brown (10YR 4/3) silt loam; weak medium granular structure; friable; common fine roots; few fine black (10YR 2/1) manganese concretions; slightly acid; clear smooth boundary. (5 to 10 inches thick)

Bw1--7 to 11 inches; brown (10YR 4/3) silt loam; moderate medium granular and subangular blocky structure; friable; common fine roots; few fine black (10YR 2/1) manganese concretions; slightly acid; clear smooth boundary.

Bw2--11 to 15 inches; brown (10YR 4/3) silt loam; moderate medium subangular blocky structure; friable; few fine roots; few fine black (10YR 2/1) manganese concretions; few medium faint yellowish brown (10YR 5/4) masses as iron accumulation; few medium faint brown (10YR 5/3) iron depletions; slightly acid; clear smooth boundary.

Bw3--15 to 26 inches; brown (10YR 5/3) silt loam; moderate medium subangular blocky structure; friable; few fine roots; few fine black (10YR 2/1) manganese concretions; common fine and medium faint dark yellowish brown (10YR 4/4) masses as iron accumulations; common fine and medium dark grayish brown (10YR 4/1) iron depletions; slightly acid; clear smooth boundary.

Bg1--26 to 34 inches; dark grayish brown (10YR 4/2) silt loam; weak medium subangular blocky structure; friable; few fine roots; few fine black (10YR 2/1) manganese concretions; common medium distinct dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/4) masses as iron accumulations; slightly acid; clear smooth boundary. (Combined thickness of the Bw horizon ranges from 15 to 45 inches)

Bg2--34 to 52 inches; grayish brown (10YR 5/2) silty clay loam; weak medium and coarse subangular blocky structure; friable; common fine black (10YR 2/1) black manganese concretions; common fine and medium distinct dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/4) masses as iron accumulations; common medium faint gray (10YR 6/1) iron depletions; moderately acid; gradual smooth boundary. (0 to 22 inches thick)

Cg--52 to 62 inches; grayish brown (10YR 5/2) silty clay loam; massive; friable; common fine black (10YR 2/1) manganese concretions; common fine and medium distinct dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/4) masses as iron accumulations; common fine and medium faint gray (10YR 6/1) iron depletions; moderately acid.

TYPE LOCATION: Davidson County, Tennessee; 0.1 mile north of Cleeces Ferry; 50 feet east of Old Hickory Boulevard.

RANGE IN CHARACTERISTICS: Depth to bedrock is greater than 5 feet. Reaction ranges from moderately acid through neutral in each horizon. Fragments range from 0 to 20 percent by volume in the A horizon, 0 to 15 percent in the B horizon, and 0 to 30 percent in the C horizon. Fragments are dominantly chert. The soil ranges from medium to high in phosphorous in each horizon.

The A and Ap horizon have hue of 10YR or 7.5YR, value of 4 or 5 and chroma of 2 to 4. Some pedons have an A horizon with hue of 10YR, value of 3 and chroma of 2 or 3 that is less than 7 inches thick. Texture of the fine earth fraction is commonly silt loam, but includes loam and silty clay loam.

The Bw horizon has hue of 10YR, value of 4 or 5 and chroma of 3 or 4. Few to common redoximorphic features with chroma 2 or less are within 24 inches of the soil surface. Texture is silt loam, silty clay loam, loam, or clay loam

The Bg horizon has hue of 10YR, value of 4 to 6 and chroma of 1 or 2. Common to many redoximorphic features are in shades of gray and brown. Some pedons are an evenly mottled pattern in these colors without a dominant color. Texture is silt loam, silty clay loam, loam or clay loam. Some pedons have buried A and B horizons.

The Cg horizon has hue of 10YR or 2.5Y, value of 4 to 6 and chroma of 1 or 2. Common to many redoximorphic features are in shades of gray, black, and brown. Texture of the fine earth fraction is loam, silt loam, silty clay loam or clay loam.

COMPETING SERIES: Monacan is the only series in the same family. Monacan soils have less than 5 percent coarse fragments in the control section and typically have a higher sand content. Soils in closely related families are the Egam, Hamblen, Lindside, and Lynnville series. Egam soils have mollic epipedons and fine-textured control sections. Hamblen soils have siliceous mineralogy. Lindside soils have a mesic soil temperature and fine-silty control sections. Lynnville soils have mollic epipedons.

GEOGRAPHIC SETTING: Lindell soils are on the flood plains of rivers, creeks, and smaller streams. Slopes are mainly less than 1 percent but range up to about 3 percent along narrow drainageways. Near the type location, mean annual temperature is 59.0 degrees F., and mean annual precipitation is 47.3 inches.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the Egam, Arrington, Sullivan, and Nolin soils on flood plains. Arrington soils are well drained and have a thick mollic epipedon. Egam soils have a mollic epipedon and have fine texture. Sullivan soils are in similar positions on floodplains and are well drained. Nolin soils are fine-silty. The Armour soils, on adjacent or nearby terraces and footslopes, and the Mimosa, Stiversville, Hampshire, and Inman series are all on the uplands. Armour, Mimosa, Stiversville, Hampshire and Inman soils have argillic horizons.

DRAINAGE AND PERMEABILITY: Moderately well drained. Slow runoff. Moderate permeability.

USE AND VEGETATION: These soils are used for growing corn, soybeans, hay, and pasture. The native vegetation was mixed hardwoods.

DISTRIBUTION AND EXTENT: The Nashville Basin of Tennessee and adjacent areas of the Highland Rim in Tennessee and Kentucky. It is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Morgantown, West Virginia 34

SERIES ESTABLISHED: Davidson County, Tennessee; 1977.

REMARKS: Diagnostic horizons recognized in this pedon are:

Ochric epipedon - from 0 to 7 inches (Ap horizon)

Cambic horizon - from 7 to about 34 inches (Bw and Bg horizons)

LOCATION MARSH

TN+KY

Established Series REV - CLD,JCJ 04/2001

MARSH SERIES

The Marsh series consists of moderately deep, well drained soils on uplands. The soil formed in colluvium or residuum from interbedded sandy limestone, siltstone, and shale. These soils are on gently sloping to steep, highly dissected back slopes, shoulders, and narrow on ridgecrests. Slopes range from 2 to 45 percent.

TAXONOMIC CLASS: Fine-loamy, mixed, semiactive, thermic Ultic Hapludalfs

TYPICAL PEDON: Marsh silt loam on a south facing, convex, 20 percent slope under hardwoods at an elevation of 740 feet. (Colors are for moist soil unless otherwise noted.)

Oi-- 1 to 0 inches; fibric material; slightly decomposed leaves, twigs, and woody materials. (0 to 2 inches thick)

A-- 0 to 3 inches; dark brown (10YR 3/3) loam; weak fine and medium granular structure; very friable; common fine roots; approximately 2 percent channers of sandy limestone; slightly acid; clear wavy boundary (2 to 7 inches thick).

BE-- 3 to 11 inches; yellowish brown (10YR 5/4) loam; weak medium subangular blocky structure; friable; common fine and medium roots; approximately 10 percent channers of sandy limestone; strongly acid; clear wavy boundary.

Bt-- 11 to 19 inches; yellowish brown (10YR 5/6) loam; weak medium subangular blocky structure; friable; common fine and few medium and coarse roots; few faint yellowish brown (10YR 5/4) clay films on faces of peds; approximately 10 percent channers of sandy limestone and siltstone; very strongly acid; clear wavy boundary. (8 to 30 inches thick)

CB-- 19 to 23 inches; yellowish brown (10YR 5/6) very channery loam; weak medium subangular blocky structure; friable; few fine roots; approximately 55 percent channers of sandy limestone and siltstone; strongly acid; abrupt wavy boundary. (5 to 9 inches thick)

Cr-- 23 to 35 inches; highly weathered, interbedded siltstone and sandy limestone with thin strata of clayey soil material.

TYPE LOCATION: Marshall County, Tennessee; 0.8 miles north of the community of Mooresville on Fitzpatrick Road; 1000 feet northwest on a hillside.

RANGE IN CHARACTERISTICS: Depth to a paralithic contact is 20 to 40 inches. Content of fragments, dominantly channers of sandy limestone or siltstone, range from 0 to 20 percent in the A horizon, 0 to 35 percent in the B horizon, and 10 to 59 percent in the C horizon. Reaction ranges from slightly acid to very strongly acid, except where limed.

The A horizon has hue of 10YR or 7.5YR, value of 3 to 4, and chroma of 3 or 4. Texture is loam or silt loam, or their channery or gravelly analogs.

The Bt horizon has hue of 10YR or 7.5YR, value of 4 or 5, and chroma of 4 or 6. Some pedons have variegations of parent material in shades of red or brown. Texture of the fine-earth fraction is loam, silt loam, or silty clay loam. In some pedons, the lower part of the B horizon has texture ranging to clay loam or silty clay.

The C horizon variegated colors from parent material in shades of red, brown, olive, or gray. Texture is loam, silt loam, silty clay loam, clay loam, or silty clay, or their channery or flaggy analogues.

The Cr horizon consists of interbedded sandy limestone, shale, and siltstone. Some pedons include a few thin strata of hard limestone. Typically, this horizon can be dug with a spade, except for the hard strata.

COMPETING SERIES: These are the <u>Bolivar</u>, <u>Deanburg</u>, <u>Liddieville</u>, <u>Pamunkey</u>, <u>Sandhill</u>, <u>Stiversville</u>, and <u>Toine</u> series in the same family. Bolivar soils have hues redder than 7.5YR in the Bt horizon. Deanburg, Liddieville, Pamunkey, and Toine soils are greater than 60 inches to bedrock. Sandhill and Stiversville soils have a paralithic contact between 40 and 60 inches.

GEOGRAPHIC SETTING: Steep upland hillsides and narrow rolling ridgecrests in the Nashville Basin. Slopes range from 2 to 45 percent. Marsh soils developed in colluvium or residuum from thinly bedded sandy limestone interbedded with siltstone and shale. Near the type location the mean annual air temperature is 57 degrees F and the mean annual precipitation is about 54 inches.

GEOGRAPHICALLY ASSOCIATED SOILS: The <u>Hampshire</u>, <u>Mimosa</u>, <u>Talbott</u>, <u>Hicks</u>, <u>Armour</u>, and <u>Stiversville</u> soils. The Hampshire, Mimosa, and Talbott soils have a fine family particle size control section. In addition, the Mimosa and Talbott soils are underlain by hard limestone bedrock. The Hicks and Armour soils are in a fine-silty family particle size control section and are greater than 60 inches to bedrock. The Stiversville soils are 40 to 60 inches to a paralithic contact.

DRAINAGE AND PERMEABILITY: Marsh soils are well drained with medium to rapid runoff. Permeability is moderate or moderately rapid.

USE AND VEGETATION: Chiefly pasture and hay, with some areas cropped in tobacco and small grains. Native forest has oak, maple, hickory, black walnut, beech, hackberry, poplar, ash, and elm as the dominant species.

DISTRIBUTION AND EXTENT: Nashville Basin of Tennessee. The series is of small extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Morgantown, West Virginia

SERIES ESTABLISHED: Marshall County, Tennessee, 1996.

REMARKS: Diagnostic horizons and features recognized in this pedon are:

Argillic horizon - 11 to 19 inches (Bt horizon)

Ochric epipedon - 0 to 11 inches (A and BE horizons)

Paralithic contact - at 23 inches (top of Cr horizon)

This soil was previously mapped as the Culleoka series, which is now mesic.

LOCATION MIMOSA

TN+AL

Established Series Rev. RPS 04/2001

MIMOSA SERIES

The Mimosa series consists of deep, well drained, slowly permeable soils that formed in clayey residuum from phosphatic limestone. These soils are on gently sloping to steep uplands with medium to rapid runoff. Near the type location, average annual precipitation is 49 inches and average annual air temperature is 60 degrees F. Slopes range from 2 to 45 percent.

TAXONOMIC CLASS: Fine, mixed, semiactive, thermic Typic Hapludalfs

TYPICAL PEDON: Mimosa silt loam--cultivated. (Colors are for moist soil unless otherwise stated.)

Ap--0 to 6 inches; dark brown (10YR 3/3) silt loam; moderate fine granular structure; friable; common fine roots; about 10 to 15 percent by volume fragments of chert 1 to 3 inches across; few fine black concretions; medium acid; clear smooth boundary. (4 to 8 inches thick)

Bt1--6 to 12 inches; brown (7.5YR 4/4) silty clay; moderate medium angular and subangular blocky structure; firm; common fine roots; thin continuous clay films; few fine black and dark brown concretions; few 1 to 3 inch angular fragments of chert; strongly acid; gradual wavy boundary.

Bt2--12 to 22 inches; strong brown (7.5YR 5/6) clay; few fine and medium faint yellowish brown (10YR 5/4) and brown (7.5YR 4/4) mottles; moderate angular blocky structure; very firm; few fine roots; thin continuous clay films; few fine black and dark brown concretions; strongly acid; gradual wavy boundary.

Bt3--22 to 30 inches; yellowish brown (10YR 5/6) clay; common fine and medium distinct brown (7.5YR 4/4), yellowish red (5YR 5/6), and pale brown (10YR 6/3) mottles; strong medium angular blocky structure; very firm; few fine roots; thin continuous clay films; few fine dark brown and black concretions; strongly acid; gradual wavy boundary.

Bt4--30 to 40 inches; yellowish brown (10YR 5/6) clay; common fine and medium distinct pale brown (10YR 6/3) and strong brown (7.5YR 5/6) mottles; weak medium and coarse angular blocky structure; very firm; few fine roots; few thin patchy clay films; common fine dark brown and black concretions; strongly acid; gradual wavy boundary. (Combined thickness of the Bt horizon ranges from 25 to 45 inches)

BC--40 to 50 inches; yellowish brown (10YR 5/6) clay; common fine to coarse distinct light yellowish brown (10YR 6/4) and light brownish gray (10YR 6/2) mottles; weak medium and coarse angular blocky structure; very firm, common medium and coarse black concretions; some thick stains along cracks and on faces of peds; strongly acid; gradual wavy boundary. (0 to 20 inches thick)

C--50 to 55 inches; light olive brown (2.5Y 5/4) clay; many fine to coarse prominent light brownish gray (10YR 6/2), yellowish brown (10YR 5/4), and gray (N 6/0) mottles; massive; very firm; common fine and medium black concretions, medium acid. (0 to 15 inches thick)

R--55 inches; phosphatic limestone bedrock.

TYPE LOCATION: Rutherford County, Tennessee, 1 mile southwest of Eagleville; 200 feet northeast of Eagle benchmark; 1,000 feet southeast of barn on Gordon Lamb Farm.

RANGE IN CHARACTERISTICS: Solum thickness and depth to rock ranges from 40 to 60 inches. Rock fragments range from 0 to 25 percent in the surface layer and 5 percent or less below. The fragments are mostly chert and most areas have less than 15 percent in the surface layer. The soil is medium acid to very strongly acid except the layer just above bedrock is medium acid to mildly alkaline. Phosphorous content of each horizon is medium to high.

The Ap horizon has hue of 10YR or 7.5YR, value of 3 to 5 and chroma of 3 to 6. Value of 5 and chroma of 6 are for pedons in severely eroded areas. Horizons with value of 3 are less than 7 inches thick. The texture is mostly silt loam or silty clay loam, but includes silty clay and clay in severely eroded areas.

Some pedons have a transitional between the Ap and Bt horizons. The Bt horizon has hue of 10YR or 7.5YR, value of 4 or 5 and chroma of 4 to 8. The texture is silty clay or clay except the upper few inches is also silty clay loam. Mottles are in shades of brown and red.

The BC and C horizons have hue of 10YR or 2.5Y, value of 5 and chroma of 4 or 6. Mottles are in shades of brown, red and gray. The texture is silty clay or clay.

COMPETING SERIES: These are the Archer, Bradyville, Conasauga, Talbott, and Winnsville series in the same family and the Braxton, Capshaw, Colbert, Conasauga, Hampshire, and Needmore series. Archer soils have sandy loam to sand surface horizons and a noticeable amount of sand in the upper part of the B horizon. Bradyville soils have Bt horizons redder than 7.5YR hue. Braxton soils have sola more than 60 inches tkick and base saturation is less than 60 percent. Capshaw soils have gray mottles in the middle and lower parts of the Bt horizon and base saturation of 35 to 60 percent. Colbert soils have montmorillonitic mineralogy and gray mottles in the B horizon. Conasauga soils have a paralithic contact at depths of 20 to 40 inches. Hampshire soils have a paralithic contact at depths of 40 to 60 inches and base saturation of less than 60 percent. Needmore soils are mesic. Talbott soils have bedrock at depths of 20 to 40 inches and have redder hues in the Bt horizon.

GEOGRAPHIC SETTING: Gently sloping to steep upland extending from the edge of the Highland Rim down into the outer Central Basin, and on outlying knobs and hills within the inner Central Basin. Slopes range from about 2 to 45 percent. The soils formed chiefly in clayey residuum weathered from phosphatic limestone. Near the type location, average annual precipitation is 49 inches and average annual air temperature is 60 degrees F.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the competing <u>Braxton</u> series, and the <u>Armour</u>, <u>Ashwood</u>, <u>Dellrose</u>, and <u>Maury</u> series. Armour and Dellrose soils are less clayey. Ashwood soils are 20 to 40 inches thick over bedrock and have a mollic epipedon. Maury soils have reddish B horizons and depth to rock is more than 60 inches

DRAINAGE AND PERMEABILITY: Well drained; medium to rapid runoff; slow permeability.

USE AND VEGETATION: Most of the acreage of these soils have been cleared, but some areas reverted back to trees. Most cleared areas are used for growing pasture and hay. Wooded areas are in oak, hickory, black walnut, elm, maple, hackberry, black and honey locust, and redcedar.

DISTRIBUTION AND EXTENT: The Central Basin of Tennessee and possibly in northern Alabama. The soil is extensive.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Morgantown, West Virginia

SERIES ESTABLISHED: Lincoln County, Tennessee; 1938.

REMARKS: Diagnostic horizons recognized in this pedon are: Ochric epipedon - 0 to 6 inches (Ap horizon) Argillic horizon - 6 to 40 inches (Bt1-Bt4 horizons)

LOCATION PRUITTON

AL+TN

Established Series Rev. GWH/JCJ/JLN 04/2011

PRUITTON SERIES

The Pruitton series consists of very deep, well drained, moderately permeable soils that formed in loamy and gravelly alluvium. The soils are on flood plains. Slopes range from 0 to 3 percent.

TAXONOMIC CLASS: Fine-loamy, siliceous, semiactive, thermic Fluventic Dystrudepts

TYPICAL PEDON: Pruitton silt loam in a nearly level cultivated field. (Colors are for moist soil unless otherwise stated.)

Ap--0 to 9 inches; brown (10YR 4/3) silt loam; weak fine granular structure; friable; many fine roots; 5 percent by volume chert fragments 1/4 to 1 inch across; moderately acid; clear smooth boundary. (5 to 10 inches thick)

Bw1--9 to 26 inches; brown (10YR 4/3) silt loam; weak fine and medium subangular blocky structure; friable; common fine roots; 2 percent by volume chert fragments 1/4 to 1 inch across; strongly acid; gradual smooth boundary.

Bw2--26 to 38 inches; dark yellowish brown (10YR 4/4) silt loam; weak fine and medium subangular blocky structure; friable; few fine roots; 5 percent by volume chert fragments 1/4 to 1 inch across; strongly acid; gradual smooth boundary. (Combined thickness of the Bw horizon is 16 to 45 inches)

2C1-38 to 45 inches; brown (10YR 4/3) gravelly fine sandy loam; weak fine granular structure; very friable; 15 percent by volume chert fragments 1/8 to 1 inch across; very strongly acid; gradual smooth boundary. (6 to 30 inches thick)

2C2--45 to 52 inches; yellowish brown (10YR 5/4) very gravelly sandy loam; common fine distinct dark brown (10YR 3/3) mottles; massive; very friable; 35 percent by volume chert fragments 1/8 to 1 inch across; very strongly acid.

TYPE LOCATION: Lauderdale County, Alabama; 3/4 mile northwest of Pruitton in SW1/4NE1/4 sec. 6, T1 S., R. 10 W. in crop field west of Butler Creek. USGS Pruitton Quad; (Latitude: 34 degrees 59 minutes 55 seconds N; Longitude: 87 degrees 37 minutes 24 seconds W)

RANGE IN CHARACTERISTICS: Solum thickness ranges from 25 to 50 inches. Depth to bedrock is greater than 60 inches. Reaction is very strongly acid to moderately acid, except for the surface layer, where limed. Coarse chert fragment ranges from none to 15 percent by volume in the A and Bw horizons and from 15 to 75 percent by volume in the C horizon. The thickness of the surface epipedon with value of 3 and chroma of 3 is less than 10 inches.

The Ap and A horizon has hue of 7.5YR or 10YR, value of 3 to 5, and chroma of 2 through 4. Texture is 42

silt loam or loam.

The Bw horizon has hue of 7.5YR or 10YR, value of 3 to 5, and chroma of 3 through 8. Texture is dominantly silt loam or loam, but the range can include clay loam or silty clay loam.

The 2C horizon has hue of 10YR, value of 4 or 5, and chroma of 3 to 6. Mottles in shades of yellow, brown, and gray range from none to many. Texture of the fine earth fraction is dominantly silt loam, fine sandy loam, or loam, but the range can include sandy loam and silty clay loam.

COMPETING SERIES: These include <u>Ennis</u> series in the same family. <u>Ennis</u> soils have 15 to 35 percent coarse fragments throughout the 10 to 40 inch control section.

GEOGRAPHIC SETTING: Pruitton soils are on flood plains primarily in narrow strips along drainageways. Slopes range from 0 to 3 percent. The soil formed in alluvium washed from soils derived from limestone, shale, sandstone, and loess. Near the type location the mean annual temperature is 59.9 degrees F., and average annual precipitation is 55.6 inches.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the competing Ennis series and Lobelville, Bodine, Dickson, Sengtown, Humphreys, Minvale, and Mountview series. Bodine, Sengtown, Humphreys, Minvale, and Mountview soils have argillic horizons. Dickson soils have a fragipan. Lobelville soils have redox depletions of chroma two or less within 24 inches of the surface.

DRAINAGE AND PERMEABILITY: Well drained; very low to negligible runoff; moderate permeability.

USE AND VEGETATION: Most areas are cleared and used for growing corn, cotton, soybeans, small grain, grain sorghum, and pasture. The native vegetation was mixed bottomland hardwoods.

DISTRIBUTION AND EXTENT: The Limestone Valley and Highland Rim of Alabama, Georgia, and Tennessee. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Morgantown, West Virginia

SERIES ESTABLISHED: Lauderdale County, Alabama; 1973.

REMARKS: This soil was formerly mapped in the Ennis series. Ennis series has been reclassified and the range in characteristics requires a weighted average of 15 to 35 percent fragments in the 10 to 40 inch control section. When the OSD was updated in 2001 the lithological discontinuity was inadvertently left off of the C1 and C2 in the OSD description and range of characteristics. Diagnostic horizons recognized in this pedon are:

Ochric epipedon - from 0 to 9 inches (Ap horizon)

Cambic horizon - from 9 to about 38 inches (Bw horizons)

LOCATION STIVERSVILLE

TN

Established Series Rev. JFC-RPS 04/2001

STIVERSVILLE SERIES

The Stiversville series consists of deep, well drained permeable soils on uplands. They formed mostly in residuum of siltstone and fine grained sandstone that is interbedded with shale and limestone. On steep slopes, some pedons formed partly in colluvium from the same material. Slopes range from 2 to 30 percent.

TAXONOMIC CLASS: Fine-loamy, mixed, active, thermic Ultic Hapludalfs

TYPICAL PEDON: Stiversville loam--pasture. (Colors are for moist soil unless otherwise stated.)

Ap-0 to 8 inches; dark brown (10YR 3/3) loam; weak fine granular structure; very friable; few thin flat weathered fragments of siltstone; many fine roots; medium acid; clear smooth boundary. (5 to 10 inches thick)

BA--8 to 14 inches; brown (7.5YR 4/4) loam; weak fine and medium subangular blocky structure; friable; many fine roots; few thin flat weathered fragments of siltstone; few fine black concretions; medium acid; clear smooth boundary. (0 to 8 inches thick)

Bt1--14 to 23 inches; brown (7.5YR 4/4) loam; moderate medium subangular blocky structure; friable; common fine roots; few faint clay films; few fine black concretions; 5 percent thin fragments of siltstone; medium acid; gradual smooth boundary. (7 to 18 inches thick)

Bt2--23 to 34 inches; brown (7.5YR 4/4) clay loam, common medium distinct yellowish brown (10YR 5/4) mottles; moderate fine and medium subangular and angular blocky structure; friable; few fine roots; many distinct clay films; common fine black concretions; 8 percent thin fragments of siltstone and sandstone; strongly acid; clear smooth boundary. (7 to 18 inches thick)

Bt3--34 to 45 inches; brown (7.5YR 4/4) clay loam, common fine and medium prominent pale brown (10YR 6/3) and yellowish red (5YR 4/8) mottles; weak medium angular blocky structure; firm; few faint clay films; common fine black concretions; 15 percent soft and hard, flat fragments of sandstone and siltstone; strongly acid; clear smooth boundary. (0 to 18 inches thick)

Cr-45 to 60 inches; brown and yellowish brown interbedded sandstone and siltstone. The bedrock is rippable and can mostly be dug with a spade, but has some hard strata.

TYPE LOCATION: Williamson County, Tennessee; 1/2 mile south of Bethesda and 500 feet southwest of junction of paved roads.

RANGE IN CHARACTERISTICS: Thickness of the solum and depth to weathered rippable bedrock ranges from 40 to 60 inches. This soil is medium acid or strongly acid and medium or high in phosphate. Each horizon of the solum contains from 0 to about 15 percent soft and hard rock fragments except the

lower part of the horizon contain 5 to 25 percent. Some pedons have a thin CB or C horizon with up to 50 percent fragments.

The A horizon has hue of 10YR or 7.5YR, value of 3 or 4 and chroma of 2 to 4. It is loam or silt loam, except severely eroded areas range to clay loam or silty clay loam.

The BA horizon, where present, has hue of 10YR or 7.5YR, value of 4 and chroma of 4 to 6. It is loam or silt loam.

The Bt horizon mostly has hue of 7.5YR, value of 4 or 5 and chroma of 4 to 6. Some pedons have subhorizons with hue of 10YR or 5YR with the same value and chroma. Mottles in shades of brown and red are none to common. It is loam or clay loam, except some pedons have thin subhorizons of silt loam, silty clay loam or clay. Fine and coarse sand exceeds 15 percent in most pedons and sand plus coarse fragments exceeds 15 percent in all pedons.

The Cr horizon is dominantly weathered siltstone and fine grained sandstone that is interbedded with shale and limestone. It is rippable and in most places can be dug with a spade. Most of the rock is relatively soft, but includes some thin strata that is hard. Some of the strata was calcareous prior to weathering and some strata contains phosphate nodules.

COMPETING SERIES: These are the <u>Bolivar</u>, <u>Liddieville</u>, <u>Pamunkey</u>, <u>Sandhill</u> and <u>Toine</u> series in the same family and the <u>Armour</u>, <u>Culleoka</u> and <u>Hicks</u> series in similar families. Bolivar soils have a paralithic contact between 20 and 40 inches. Liddieville, Pamunkey and Toine soils formed in alluvium on stream terraces and are greater than 60 inches to bedrock. Sandhill soils have 15 to 35 percent rock fragments in the solum. Armour soils formed in silty alluvium in the upper 2 to 4 feet, are fine-silty and are greater than 60 inches to bedrock. Hicks soils formed in loess in the upper 1.5 to 3 feet and are fine-silty.

GEOGRAPHIC SETTING: Stiversville soils are on upland ridgetops and side slopes. Slopes range from about 2 to 30 percent. They formed mostly in residuum of siltstone and fine grained sandstone that is interbedded with limestone and shale. On steep slopes, some pedons formed partly in colluvium from the same material. Near the type location, mean annual temperature is 59 degrees F., and mean annual precipitation is 48 inches.

GEOGRAPHICALLY ASSOCIATED SOILS: These are the competing <u>Hicks</u> and <u>Sandhill</u> series and the <u>Hampshire</u> and <u>Inman</u> series. Hampshire and Inman soils have a fine control section and Inman soils are less than 40 inches to a paralithic contact.

DRAINAGE AND PERMEABILITY: Well drained; medium runoff; moderately rapid permeability.

USE AND VEGETATION: Most areas are used for growing pasture, hay, small grains, tobacco, and corn. The native vegetation was oak, hickory, elm, hackberry, maple, beech, black walnut, ash, locust, and yellow poplar.

DISTRIBUTION AND EXTENT: The Central Basin of Tennessee. The series is of moderate extent.

MLRA SOIL SURVEY REGIONAL OFFICE (MO) RESPONSIBLE: Morgantown, West Virginia

SERIES ESTABLISHED: Williamson County, Tennessee; 1961. REMARKS: Diagnostic horizons and features recognized in this pedon are:

Ochric epipedon - the zone from 0 to 8 inches (Ap horizons)

Argillic horizon - the zone from 14 to 42 inches (Bt1, Bt2, Bt3 horizons)

Paralithic contact - at 42 inches (top of Cr horizon.)

APPENDIX 2.7 ERODIBILITY TABLE

Soil Series	Erodibility Index for surface horizon as designated by Web Soil Survey		/ Class Based ity Table Beld	
	(Kf)	low	mod	high
Armour	0.43		х	
Hampshire	0.32-0.43		Х	
Harpeth	0.43		X	
Egam	0.32-0.43		Х	
Lindell	0.32		Х	
Mimosa	0.37		Χ	
Marsh	0.37		Χ	
Pruitton	0.32		Χ	
Stiversville	0.32		х	

Soil Erodibility (K) Factor

The K factor represents both susceptibility of soil to erosion and the amount and rate of runoff. Soil texture, organic matter, structure, and permeability determine the erodibility of a particular soil. K values for various soil types are presented in Table 1.

Table 1. Soil Characteristics Associated with K Values.

SOIL TYPE	ERODIBILITY	K VALUE RANGE
fine-textured; high in clay	low	0.05 - 0.15
course-textured; sandy	low	0.05 - 0.20
medium-textured; loams	moderate	0.25 - 0.45
high silt content	high	0.45 - 0.65

Soil organic matter reduces erodibility. However, extrapolation of the K factor nomograph beyond an organic matter of 4% is neither recommended by the NRCS nor allowed by RUSLE software. The USLE also uses this organic matter limit. Addition or accumulation of increased organic matter through management is represented within the C value. Soil structure affects both susceptibility to detachment and infiltration. Permeability of the soil profile affects K because it affects runoff. Where published K values are not available, a value can be estimated using the published soil erodibility nomograph (Wischmeier and Smith 1978, Renard et al. 1996). Erodibility index (EI) zones have been developed for some geographic areas which allow the use of t

The annual distribution of rainfall erosivity directly influences seasonal values of K. (1)

(1) Jones, David S., Kowalski, David G., and Shaw, Robert B. Calculating Revised Universal Soil Loss Equation Estimates on Dept. of Defense Lands: A Review of RUSLE Factors and U.S. Army Land Condition Trend Analysis (LCTA) Data Gaps. Center for Ecological Management of Military Lands Dept. of Forest Service, Colorodo State University

APPENDIX 3.1 SOIL PEDON DESCRIPTIONS

Described By:		Terry Henry and John Gibi	Gibi		Õ	Date: 1-2	1-22-15		
Site Location:		k I.n. off Nolins	Big Oak Ln. off Nolinsvile Rd. "Enclaye at Dove Lake"	ove Lake	=				
Stap or Plt #:	#1 BB-44	-44	19	1	E	File # (office use only):	use only)		
Soll Series:	Stiversville	sville		•	ā	Drainage Class:	\$6 80	well drained	
Soll Classification:	ł	fine-sitly			Ğ	Ground Water:		none	
Parent Material:		residuum							
Climate:	Thermic	nic			5	tand Cover:	SOF	sorghum stubble	
Slope of Map Unit:		0-5%			S	Slope of Pit:	3%	Ęrosian:	H
Geomorphic	Geomorphic Description:	upland ridge							
Physiographic Location:	le Location:	Nashville Basin							
			Soli Pe	Soli Pedon Description	lon		==		
								State Design Criteria	
Horizon	Depth	Calor(s)	Depletions/Concentrations Redox/Mottles	Texture	Grade	Size	Туре		Maximum Hydraulic Loading Rate GPD/SF (Table 17-2 or 16-1)
Ap1	0-2	-		lis	1	J	gr		
Ap2	2-7			sil	-	E	sbk		
B/A	7-17			. sil	2	B	sbk		
Bt1	17-24			sil	2	Ę.	sbk		
Bt2	24-36			sicl	2	E	sbk		
Bt3	36-43								
			•						
				T		-	1		

Described By:		Terry Henry and John Gib	Gibi		۵	Date: 1-22-15	22-15		
Site Location:		Oak I.n. off Nolins	Big Oak In. off Nolinsvile Rd. "Enclave at Dove Lake"	Dove Lak	- _e				
Stap or Pit#:		#2 GG-44		1	4	File # (office use only):	use only)		
Soll Series:		Stiversville			۵	Drainage Class;	155;	well drained	
Soli Cussification:	- 1	fine-loamy			9	Ground Water:		none	
Parent Material:		residuum							
Climate:	The	Thermic			4	Land Cover:		sorghum stubble	
Stope of Map Unit:		0-5%			7,	Slope of Pit:		4% Eroslani ,	
Geomorphi	Geomorphic Description:	upland							
Physiograp	Physiographic Location:	Nashville Basin					11		
			ł IIas	Soli Padon Dascríption	tion				
								State Design Criteria	
Hortzon	Depth	Colan(s)	Depletions/Concentrations Redox/Mottles	Texture	Grade	Size	Type	Ma Texture & Structure (Grade & Type) Lo: (T	Maximum Hydraulic Loading Rate GPD/SF (Table 17-2 or 16-1)
Ap1	0-2			sil	-	Ĵ	Į,		
Ap2	2-6			sil	-	EL	sbk		
B/A	6-11			sicl.	2	£	shk		
Bt1	11-17			sicl	2	ш	sbk		
Bt2	17-27			تا دا	2	ш	sbk		
Bt3	27-35			ਹ	7	E	sbk		

41-50

Ç

Bt4

Described By:	- 1	Terry Henry and John Gibi	Gibi		ä	Date: 1-22-15	2-15	į
Site Location:		k I.n. off Nolins	Big Oak Ln. off Nolinsvile Rd. "Enclave at Dove Lake"	love Lake	= 0			
Stop or Pit #:		#3 Center of BB-CC 46 and 47	6 and 47	A	Ξ	File # (office use only):	use only):	Higher the state of the state o
Soll Sarless	Stiversville	sville			٥	Drainage Class:	ss: well drained	
Soil Classification:		fine-loamy			Ů,	Ground Water:	n none	
Parent Material:		residuum weathered	from sandstone					
Climate:	Thermic	nic			-	Land Cover:	sorghum stubble	
Stope of Map Unit:	-	5-15%			S	Slope of Pit:	9% Fraston: , none to slight	o slight
Geomorphic	Geomorphic Description:	upland sideslope	deslope					
Physiographic Location:	lc Location:	Nashville Basin						
			Soll P	Soll Pedon Description	Hon			
							State Design Criteria	
Horizon	Depth	Color(s)	Depletions/Concentrations Redox/Mottles	Texture	Grade	Size	Maximun Type Texture & Structure (Grade & Type) (Table 1.	Maximum Hydrautic Loading Rate GPD/SF (Table 17-2 or 16-1)
Ap1	0-4			н	_	ţ	gr	
Ap2	4-8			1		ţ	gr	
BA	8-16			gr-L	2	E	sbk	
BtI	16-27			cl	2	H.	sbk	
	_							

sbk

Е

U

27-55

Bt2

Described By:	- 1	Terry Henry and John Gibi	Gibi		ä	Date: 1-22-15	22-15	The second secon	
Site Location:		Big Oak I.n. off Nolinsvil	vile Rd. "Enclave at Dove Lake"	Dove Lake	= 0.3				
Stop or Pit #:		#4 FF-GG47 and 48 center	enter	a	E.	file # (office use only):	use only)		
Soll Sarles:	Stiversville	sville			٥	Drainage Class:	:55:	well drained	
Soil Classification:		fine-loamy			Ü	Ground Water:		none	
Parent Materlal:		residuum weathered	l from sandstone						
Climate:	Thermic	nic			ت	Land Cover:	1	sorghum stubble	
Slape of Map Unit:	Jult: 5-15%	5%			5	Slope of Pit:	%9	% Ęrasłon: ,	
Geomorphic	Geomorphic Description:	upland sideslope	ре						
Physiographic Location:	c Location:	Nashville Basin							
							:		
			dilos	Soll Padon Description	tlan				
								State Design Criteria	
Horizon	Depth	Colon(s)	Depletions/Concentrations Redox/Mottles	Texture	Grade	Size	Туре		Maximum Hydraulic Loading Rete GPD/SF (Table 17-2 or 16-1)
Ap	0-5			Ţ	-		12		
ΒA	5-12			Γ	1	ш	sbk		
Bt1	12-24			cl	2	Ħ	sbk		
Bt2	24-44			cl	2	æ.	sbk		
Ċ	44								
			·						
									T

Described By:		Terry Henry and John Gibi	Gibi		ä	Date: 1-	1-22-15		
Site Location:		Big Oak I.n. off Nolinsvile	wile Rd. "Enclave at Dove Lake"	ove Lak	= 0.				
Stop or Pit #:	#5 BB-50	3-50		er e	=	le if (office	File if (office use only):		
Soll Sarles:	Pruitton	on			O	Oralnake Class;		well drained	
Soil Classification:	1	fine-loamy			9	Ground Water:	,	none	
Parent Material:	al: alluvium	mn							
Climate:	Thermic	mic			2	Land Cover:		sorghum stubble	
Slope of Map Unit:		5-15%			S	Slope of Pit:	: 10%	% Ęrosion: ,	
Geomorphic Description:	Jesaription:	floodplain							
Physiographic Location:	Location:	Nashville Basin							
			d lios	Soli Pedon Description	tion				
			Depletions/Concentrations					Ę	Maximum Hydraulic
Horizon	Depth	Color(s)	Redox/Mottles	Texture	Grade	Size	Туре	Texture & Structure (Grade & Type) Loading (Table	Loading Rate GPD/SF (Table 17-2 or 16-1)
Ap				sil		f&m	gr&sbk		
A/B				sil	2	E	sbk		
B1				ı-ı.	2	E	sbk		
B2	1=			Ţ	2	B	sbk		
Bw1				T	-	В	sbk		
Bw2				T	1	ш	sbk		
Bw3			-	T	-	Ħ	sbk		
Bw4				Ы	-	E	sbk		
Bw5				sil	П	Ħ	sbk		

Described By:		Terry Henry and John Gil	Gibi		٥	Date: 1-22-15	22-15	
Site Location:		k Ln. off Nolins	Big Oak Ln. off Nolinsvile Rd. "Enclave at Dove Lake"	Nove Lak	= 0			
Stap or Pit #:	#6 FF-50	F-50		,	ū	le # (office	File it (office use only):	
Soll Series:	Stiversville	lle			£.	Drainage Class:	855;	well drained
Solf Classification:		fine-loamy			В	Ground Water:		none
Parent Material:	rial: residuum	ınım			-			
Climate:	Thermic	nic			~*	tand Cover:		sorghum stubble
Slope of Map Unit:	p Unit: 5-15%	%			5,	Slope of Pit:	r. 13%	6 Erosion:
Geomorphic Description:	Description	upland						
Physiograpisic Location:	ic Location:	Nashville Basin						
								and the second s
			d llos	Soll Pedon Description	tion			
								State Design Criteria
Horizon	Depth	Color(s)	Depletions/Concentrations Redox/Mottles	Texture	Grade	Size	Турв	Maximum Hydraulic Texture & Structure (Grade & Type) Loading Rate GPD/SF (Table 17-2 or 16-1)
Ap1	0-4			Г	1	, ¥	Ig	
Ap2	4-8			gr-L	-	Ť.	sbk	
BA	8-16			Ţ	2	m	sbk	
Bt2	16-40			را دا	2	, m	sbk	
Bt3	40-50			cl	2	m	sbk	

Described By: Terry Henry and John Gibi	Date: 1-22-15
Site Location: Big Oak I.n. off Nolinsvile Rd "Enclave at Dove Lake"	
Stap or Pit #: #7 NN-50	File # (office use only):
Soll Sarless Lindell	Drainage class: well drained
Soll Classification; fine-loamy	Ground Water . none
Parent Material: alluvium	
Climate: Thermic	tand cover: sorghum stubble
Slope of Map Unit: 0-5%	Slope of Pit; 2% Erosion:
Geomorphic Description: floodplain	
Physiographic Location: Nashville Basin	

		Maximum Hydraulic Loading Rate GPD/SF (Table 17-2 or 16-1)							
	State Design Criteria	Texture & Structure (Grade & Type)							
		Туре	f&m gr&sbk	sbk	sbk	sbk	sbk	sbk	
		Size	f&m	Я	Ħ	Œ,	ш	ш	
tion		Grade	-	-	-	-	-	2	
Soll Pedon Description		Texture	T	T	1	П	lis	sicl	
g Hos		Depletions/Concentrations Redox/Mottles		few 10YR 5/4	common 10XR 6/4		common 10 YR 6/2	common 10 YR 4/2 sicl	-
		Color(s)		10YR 4/3	10YR 4/4	10YR 4/4	10YR 5/3	7.5 YR 5/4	
		Depth	0-4	4-10	10-15	15-24	24-39	39-52	
		Horizon	Ар	В	Bw1	Bw2	Ab	Btb	

Described By:]	Terry Henry and John Gibi	Gibi		č	Date: 1-22-15	22-15		I
Site Location:	-	k.Ln. off Nolins	Big Oak Ln. off Nolinsvile Rd. "Enclave at Dove Lake"	Dove Lak	± 0,				1
Stap or Pit #;	#8 N-24	24		1	E .	le # (office	File # (office use only):		7
Soll Saries:	Harpeth	ı			Ō	Oralnage Class:		well drained	
Soil Classification;	tion: fine-silty	ilty			Ö	Ground Water:		none	
Parent Material:		alluvium/colluvium over residuum	over residuum				ű		
Climate:	Thermic	nic			23	Land Cover:		sorghum stubble	
Slope of Map Unit:		5-15%			S	Slope of Pit:	: 12%	& §rosian: ,]
Geomorphic Description:	j	upland							
Physiographic Location:		Nashville Basin							
									1
			Soll P	Sall Pedon Description	tlon				
							Γ	State Design Criteria	
Horizon	Depth	Color(s)	Depletions/Concentrations Redox/Mottles	Textura	Grade	Słże	Type	Maximum Hydrautic Texture & Structure (Grade & Type) Loading Rate GPD/SF (Table 17-2 or 16-1)	ufic 5/SF 6-1)
Ap1				sil	1	ť	150		
Ap2				sil	2	m,	sbk		
A/B				ļis	2	H	sbk		
Bt1	,			sicl	2	Ħ	sbk		
Bt2				sicl	2	Ħ	sbk		
Bt3				sicl		В	sbk		
							-	فالمنافي والمارية وال	-

Described By:		Terry Henry and John Gibi	Gibi		٥	Date: 1-22-15	22-15		į
Site Location:	Big Oa	k Ln. off Nolins	Big Oak Ln. off Nolinsvile Rd. "Enclave at Dove Lake"	Dove Lake	= 0				
Stap or Pit #:	#9 U-10	10		,	it	File # (office use only):	(Ajuo asn		
Soll Series:	Stiversville	ville			۵	Oralnage Class;	16.55	well drained	
Soil Classification;	on: fine-loamy	oamy.			U	Ground Water:		none	
Parent Material:	at: residuum	um							
Climate:	Thermic	nic	-		٦	Land Cover:		sorghum stubble	
Slope of Map Unit:		5-15%			57	Slope of Pit:		10% Eraskan:	
Geomorphic Description:		upland sideslope	ž						
Physiographic Location:		Nashville Basin							
			d Ilos	Soll Pedon Description	ilon				
								State Design Criteria	
Ноптон	Depth	Color(s)	Depletions/Concentrations Redox/Mottles	Texture	Grade	Slze	Туре	Maxir Texture & Structure (Grade & Type) Loadi	Maximum Hydraulic Loading Rate GPD/SF (Table 17-2 or 16-1)
Ap1				sil	-	4.	į.		
Ap2				sil	1	m	sbk		
B/A				sicl	,2	Ħ	sbk		
Bt1				sicl	2	E,	sbk		
Bt2			·	vgr sicl	2	Ħ	sbk		
Bt3				sic	2	Ε	shk		

sbk

E

sic

Bt4

Described By: John Gibi	lohn Gibi	Date: 1-22-15
Site Location:	Big Oak I.n. off Nolinsvile Rd. "Enclave at Dove Lake"	
Stop or Pit #:	#10 P-11	File # (office use only):
Soll Sarles:	Stiversville	Dratnage Class: well drained
Solf Classification:	fine-loamy	Ground Weter . none
Parent Material:	residuum weathered from limestone	
Climate:	Thermic	tand Cover: sorghum stubble
Slope of Map Unit:	5-15%	Slope of Pit: 10% Erosion: , none
Geomorphic Descri	Geomorphic Description: upland sideslope	
Physiographic Location:	ion: Nashville Basin	

Soil Padon Description	State Design Criteria	Color(s) Redox/Mottles Texture Grade Size Type Texture & Structure (Grade & Type) Loading Rate GPD/SF (Table 17-2 or 16-1)	sil i f gr	sil 1 f. gr	sicl 1 m sbk	sicl 2 m sbk	cl 2 m sbk	cl 2 m sbk	
						7			
		Depth	0-4	4-8	8-19	19-27	27-33	33-50	
		Horizon	Apl	Ap2	BA	Bt1	Bt2	Bt3	

Described By:	Inha Cihi	<u>:</u>			ĉ	·				
	ומווום	IUI		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		CI=77-1 3mm	CI-77			
Site Location:	Big Oa	Big Oak In. off Nolinsvil	svile Rd. "Enclave at Dove Lake"	ve Lake	اً					
Stop or Pit #:	#11 K-11	-11			在	e if (office	File # (office use only):			
Soll Series:	Stiversville	ville			ă	Dralnage Class:	188	well drained		
Soil Classification:		fine-loamy			Ö	Ground Water:		попе		
Parent Material:		um weathered	residuum weathered from sandstone							
Climate:	Thermic	nic			5	Land Cover:		sorghum stubble		
Slope of Map Unit:	#	5-15%			S	Slope of Pit:	,,,	10% Ero	Ęrosłan: ,	
Geomorphic Description:	scription:	upland								
Physiographic Location:		Nashville Basin								
			pad II as	Soll Pedon Description	T					
							ľ	State Design Criteria	n Criteria	
Horizon	Depth	Color(s)	Depletions/Concentrations Redox/Mottles	Textura	Grade	Size	Type	Texture & Structure (Grade & Type)	Type)	Maximum Hydraulic Loading Rate GPD/SF

	13	Maximum Hydraulic Loading Rate GPD/SF (Table 17-2 or 16-1)						
	State Design Criteria	Texture & Structure (Grade & Type)						
		Туре	gr	sbk	shk	sbk	sbk	
		Size	· J	Ü	æ	ņ	E	
		Grade	_	1	. 2	2	2	
ligardiness moss men		Textura	sil	sicl	sicl	cl	gr cl	
		Depletions/Concentrations Redox/Mottles						•
		Color(s)						
		Depth	9-0	6-12	12-26	26-38	38-50	
		Horizon	Ар	B/A	Bt1	Bt2	Bt3	

Described By: John Gibi	ohn Gibi	Date: 1-22-15
Site Location:	Big Oak Ln. off Nolinsvile Rd. "Enclave at Dove Lake"	
Stop or Pit #:	#12 G-9	file # (office use only):
Soll Sarles:	Armour	Drainage Class: well drained
Soil Classification:	fine-sitly	Ground Water: . none
Parent Material:	alluvium	
Climate:	Thermic	tand cover: sorghum stubble
Slope of Map Unit:	5-15%	Slope of Pit: 6% Erosion: ,
Geomorphic Description:	nion: high terrace	
Physiographic Location:	ion: Nashville Basin.	

Soll Pedon Description

	Maximum Hydraulic Loading Rate GPD/SF (Table 17-2 or 16-1)						
State Design Criteria							And the state of t
	Туре	gr	sbk	sbk	sbk	sbk	
	Size	f.	Ą	m	티	н	
	Grade	1	1	2	2	2	
	Texture	sil	sil	sicl	sicl	sicl	
	Depletions/Concentrations Redox/Mottles						-
	Color(s)						
	Depth						
	Horizon	Ap	B/A	Bt1	Bt2	Bt3	

Described By:	John Gibi	Date: 1-22-15	
Site Location:	Big Oak Ln. off Nolensville Rd. Williamson County	"Enclave at Dove Lake"	1.0
Stop or PIt #:	#13 F-11	File # {office use only]:	
Soll Sarles	Harpeth	Oralnage class: Well	well drained
Soil Classification:	fine-silty	Ground Water: none	
Parent Material:	alluvium over residuum		
Climate:	thermic	Land Cover:	
Slope of Map Unit: 5-15%	5-15%	Slope of Pit: 6%	Ęrosłon: ,
Geomorphic Description:	lon: upland ridge		
Physiographic Location:	on: Nashville Basin		

Soll Pedon Description

П	0 # -			T	1		1	
	Maximum Hydraulic Loading Rate GPD/SF (Table 17-2 or 16-1)							
State Design Criteria	Texture & Structure (Grade & Type)							
	Туре	돲	sbk	sbk	sbk	sbk		
	Size	£	Ħ	Ħ	Ħ	E		
	Grade	1	-	7	2	2		
	Texture	sil	sil	sicl	sicl	sicl		
	Depletions/Concentrations Redox/Mottles							
	Calor(s)							
	Depth	0-5	5-12	12-21	21-39	39-50		
	Harizon	Apl	Ap2	B/A	Bt1	2Bt	-	

Described By:	John Gibi	Date: 1-22-15	-15
Site Location:	Big Oak Ln. off Nolensville Rd. Williamson County	"Enclave at Dove Lake"	ove Lake"
Stop or Pit #:	#14 K-15	File # (office use only):	1
Soll Seriest	Harpeth	Orainage Class:	well drained
Soll Classification:	fine-silty	Ground Water:	none
Parent Material:	alluvium over residuum		
Climate:	thermic	Land Cover:	
Slope of Map Unit: 5-15%	5-15%	Slope of Pit:	6% Erasian: ,
Geomorphic Description:	on: upland ridge		
Physiographic Location:	n: Nashville Basin		

Soll Pedon Description

П	3 % 2				T			
	Maximum Hydraulic Loading Rate GPD/SF (Table 17-2 or 16-1)							
State Design Criteria	Texture & Structure (Grade & Type)							
	Туре	gr	54	sbk	sbk	sbk		
	Size	·	Ţ	E	Ħ	8		
	Grade	1	1	2	2	2		
	Texture	sil	sil	sicl	sicl	sicl		
	Depletions/Concentrations Redox/Mottles							
	Color(s)							
	Depth	0-4	4-7	7-18	18-26	26-33	33-50	
	Harizon	Ap1	Ap2	B/A	Bt1	2Bt	Bt3	

Described By:	John Gibi	Date: 1-22-15
Site Location:	Big Oak Ln. off Nolensville Rd. Williamson County	"Enclave at Dove Lake"
Stop or Plt #:	#15 O-22	File # (office use only):
Soll Series	Stiversville	Drainage Class: well drained
Soil Classiffcation:	fine-loamy	Ground Water: none
Parent Material:	residuum from weather ed sandstone	
Climate:	thermic	Land Cover:
Slope of Map Unit: 5-15%	5-15%	Slope of Pit: 10% Erusian: ,
Geomorphic Description:	lon: upland sideslope	
Phystographic Location:	on: Nashville Basin	

Described By:	John Gibi	Date: 1-22-15	-15	
Site Location:	Big Oak Ln. off Nolensville Rd. Williamson County	"Enclave at Dove Lake"	ove Lake"	
Stop or Pit #:	#16 R-26	File # (office use only):	γ.	
Soil Series:	Stiversville	Orainage Class:	well drained	
Soil Classification:	fine-loamy	Ground Water:	none	
Parent Material:	residuum from weather ed sandstone			
Climate:	thermic	Land Cover:		
Slope of Map Unit:	5-15%	Slope of Pit:	14% Erasion: ,	æ
Geomorphic Description:	ion: upland sideslope			
Physiographic Location:	n: Nashville Basin			

Soll Padon Description	State Design Criteria	Depth Color(s) Redox/Mottles Texture Grade Size Type Texture & Structure (Grade & Type) Loading Rate GPD/SF (Table 17-2 or 16-1)	0-4 sil 1 f gr	4-12 sil 1 m sbk	12-18 sicl 2 m sbk	18-29 gr cl 2 m sbk	29-40 gr cl 2 m sbk	
		Depth	0-4	4-12	12-18	18-29	29-40	
		Horizon	Ap1	B/A	Bt1	Bt2	Bt3	

SOIL TEXTURE LEGEND OF ABBREVIATIONS:

	Loam
sil	Silt Loam
sicl	Silty Clay Loam
С	clay
GR	Gravelly modifier > or = to 15% but less than 35%
VGR	Very Gravelly > or = to 35% but less than 60%
XGR	Extremely Gravelly > or = to 60% but < than 90%
1-1	

SOIL STRUCTURE LEGEND OF ABBREVIATIONS:

GADE	
0	STURCTURELESS
1	WEEK
2	MODERATE
3	STRONG
SIZE	
f	FINE
m	MEDIUM
ТУРЕ	
gr	GRANULAR
sbk	SUBANGULAR BLOCKY
m	MASSIVE

APPENDIX 3.3 RESULTS FROM Ksat TESTS

	Amo	ozeme	ter Data	Sheet				
User(s):			Lonr	ie Norrod	Soil Consul	ting		
Date:		3/30/2017	NEW RES	Permean	neter#:	E (153.228.47A)		
Location:	Propilities a	Enclave A	DESIDENT.	Air Temp	erature (F)	initial:		
Soil Survey Area/Special Project:				Air Temp	erature (F)	final:	60	
Series or Map Unit Component:		Lindell		¹ Soil Mois	sture Conte	nt (%):	moist	
Pedon Number:			¹ If not known, give a relative soil moisture content. i.e					
Horizon Tested:		Bw2		dry, moist, or wet.				
Set-up Calculation		1						
Hole Depth (cm): 50.8				² Actual water level in hole (cm): 17.1			17.1	
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You wan		value to be very Initial:		17.1	
Desired Water Depth in Hole (cm):	-15				limeter.)	Final:	17.1	
CHT Tube setting (cm) = d: 45.8				³ Auger Hole Radius (cm) Standard kit (6 cm) diam. auger 4			4.1	
Outflow Chamber (s) used:	~:		40	-	(=20.0 cm	2) Set on 1 (La	rge Tank only)	
[Associated Conversion	10	05.0 (=105.0 cm ²) Set on 2 (Both Tanks)						
⁴Drop in Water	Outflow Chamber	Clock Time		ed Time readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat	
(cm)	(C.F.)	(hr:min)	(min) :	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)	
Ex 4.9	20	10:17			392	0.4139	0.1629	
Start			XXX	XXXX	XXXX	XXXXX	XXXXXX	
1.90	105.0		5	0.083	2394.0	1.75483	0.69088	
3.60	105.0		10	0.167	2268.0	1.66247	0.65451	
6.50	105.0		19	0.317	2155.3	1.57983	0.62198	
-					Mean K:	1.66571	0.65579	
				*5	St. Dev:	0.0875	0.0345	
				Contract Con	Hydraulic	Conductivity	Mod. High	

Ksat Class	Conductivity Class Limits Alternative Equivalent Units						
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg	
Very High	≥ 100	14.2	36	864	0.000102	##########	
High	10-100	1.42	3.6	86.4	0.0000102	##########	
Moderately High	1.0-10	0.142	0.36	8.64	#############	##########	
Moderately Low	.1-1.0	0.0142	0.036	0.864	########	#########	
Low	.011	0.00142	0.0036	0.0864	#########	##########	
Very Low	<.01						

	Amo	ozeme	ter Data	Sheet				
User(s):			Lonn	ie Norrod S	Soil Consult	ing		
Date:	I least moust	4/1/2015		Permean		Zim Zitil	TO LESS COSTOS NO	
Location:		Enclave B		Air Temp	erature (F)	initial:	PULS LEGAL	
Soil Survey Area/Special Project:				Air Temp	erature (F)	final:	66	
Series or Map Unit Component:		Pruitton		¹ Soil Mois	sture Conte	nt (%):	moist	
Pedon Number:		e care is	312.2016	1.4	own, give a relative soil moisture content. i.e. t, or wet.			
Horizon Tested:		Bw1	Care In	dry, moist,				
Set-up Calculation		1						
Hole Depth (cm):	50.8	1	H =	² Actual v	/ater level ir	hole (cm):	16.5	
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You want this value to be very close to 15 cm.			Initial:	16.5	
Desired Water Depth in Hole (cm):	-15		(Record to nearest millimeter.)			Final:	16.5	
CHT Tube setting (cm) = d:	45.8		r = Standard kit (6 cm) diar				3	
Outflow Chamber (s) used:					(=20.0 cm ²	2) Set on 1 (La	rge Tank only)	
[Associated <u>C</u> onversion	on <u>F</u> actor:]		10	5.0	(=105.0 cm²) Set on 2 (Both Tanks)			
⁴ Drop in Water	Outflow Chamber	Clock Time		ed Time readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat)	
(cm)	(C.F.)	(hr:min)	(min):	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)	
Ex 4.9	20	10:17			392	0.4139	0.1629	
Start			XXX	XXXX	XXXX	XXXXX	XXXXXX	
1.90	105.0		10	0.167	1197.0	1.09965	0.43293	
1.50	105.0		8	0.133	1181.3	1.08518	0.42724	
3.00	105.0		16	0.267	1181.3	1.08518	0.42724	
				100000	Mean K:	1.09001	0.42914	
				*5	St. Dev:	0.0084	0.0033	
					Hydraulic	Conductivity	Mod. High	

	Saturated Hydrauli	e Conductiv	ity Class L	imits	egs of the great	. 144	
Ksat Class	Class Limits (Range)	Alternative Equivalent Units					
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg	
Very High	≥ 100	14.2	36	864	0.000102	###########	
High	10-100	1.42	3.6	86.4	0.0000102	##########	
Moderately High	1.0-10	0.142	0.36	8.64	##############	###########	
Moderately Low	.1-1.0	0.0142	0.036	0.864	#############	############	
Low	.011	0.00142	0.0036	0.0864	#########	###########	
Very Low	<.01						

	Amo	ozeme	ter Data	Sheet					
User(s):			Lonr	nie Norrod	Soil Consult	ting			
Date:		3/30/2015		Permean					
Location:		Enclave C		Air Temp	erature (F)	initial:			
Soil Survey Area/Special Project:				Air Temp	erature (F)	final:	60		
Series or Map Unit Component:	The Halleston	Pruitton		Soil Mois	sture Conte	nt (%):	moist		
Pedon Number:	THE STATE OF THE S			1	¹ If not known, give a relative soil moisture content. i.e.				
Horizon Tested:	Cestini	Bw1	A III VALL		dry, moist, or wet.				
Set-up Calculation		1							
Hole Depth (cm):	50.8	1	H =	² Actual v	ater level i	n hole (cm):	16.5		
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You want this value to be very close to 15 cm.			Initial:	16.5		
Desired Water Depth in Hole (cm):	-15		(Record to nearest millimeter.)			Final:	16.5		
CHT Tube setting (cm) = d:	45.8		r = ³ Auger Hole Radius (cm) Standard kit (6 cm) diam. auge				4.1		
Outflow Chamber (s) used: [Associated <u>C</u> onversion	on <u>F</u> actor:]		10	05.0		²) Set on 1 (La n ²) Set on 2 (B	rge Tank only) loth Tanks)		
⁴Drop in Water	Outflow Chamber	Clock Time		ed Time readings)	Outflow (Q)	Hydraulic Co	enductivity (Ksat		
(cm)	(C.F.)	(hr:min)	(min) :	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)		
Ex 4.9	20	10:17			392	0.4139	0.1629		
Start			XXX	XXXX	XXXX	XXXXX	XXXXXXX		
3.40	105.0		12	0.200	1785.0	1.37604	0.54175		
6.40	105.0		22	0.367	1832.7	1.41284	0.55623		
4.60	105.0	, i	15	0.250	1932.0	1.48936	0.58636		
					Mean K:	1.42608	0.56145		
				*5	St. Dev:	0.0578	0.0228		
					Hydraulic	Conductivity	Mod. High		

Ksat Class	Class Limits (Range)	Alternative Equivalent Units					
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg	
Very High	≥ 100	14.2	36	864	0.000102	#########	
High	10-100	1.42	3.6	86.4	0.0000102	#######################################	
Moderately High	1.0-10	0.142	0.36	8.64	#########	#######################################	
Moderately Low	.1-1.0	0.0142	0.036	0.864	#######################################	##########	
Low	.011	0.00142	0.0036	0.0864	#######################################	##########	
Very Low	<.01						

	Amo	ozeme	ter Data	Sheet				
User(s):	2 No. 1 2		Lonn	ie Norrod	Soil Consult	ing		
Date:		3/30/2015	8-45	Permean	neter#:			
Location:	Service and	Enclave D		Air Temp	erature (F)	initial:		
Soil Survey Area/Special Project:		WARETER		Air Temp	erature (F)	final:	65	
Series or Map Unit Component:		Stiversville		¹ Soil Moi	sture Conte	nt (%):	moist	
Pedon Number:	STREET TAKE			1 If not kno	own, give a relative soil moisture content. i.e.			
Horizon Tested:		Bt1		dry, moist,				
Set-up Calculation	-	1						
Hole Depth (cm):	50.8	1	H=	² Actual v	vater level in	n hole (cm):	15.0	
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You want this value to be very close to 15 cm.			Initial:	15.0	
Desired Water Depth in Hole (cm):	-15		(Record to nearest millimeter.)			Final:	15.0	
CHT Tube setting (cm) = d:	45.8		r = ³ Auger Hole Radius (Standard kit (6 cm) d				3	
Outflow Chamber (s) used:					(=20.0 cm	2) Set on 1 (La	rge Tank only)	
[Associated Conversion	on <u>F</u> actor:]		10)5.0	(=105.0 cm ²) Set on 2 (Both Tanks)			
⁴ Drop in Water	Outflow Chamber	Clock Time	1 .	ed Time readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat	
(cm)	(C.F.)	(hr:min)	(min):	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)	
Ex 4.9	20	10:17			392	0.4139	0.1629	
Start	I		ххх	XXXX	XXXX	XXXXX	XXXXXX	
2.30	105.0		30	0.500	483.0	0.50996	0.20077	
1.50	105.0		19	0.317	497.4	0.52513	0.20675	
2.10	105.0		26	0.433	508.8	0.53725	0.21152	
		-		00	Mean K:	0.52412	0.20634	
				*5	St. Dev:	0.0137	0.0054	
				TOTAL PROPERTY.	Hydraulic	Conductivity	Mod. High	

Ksat Class	Class Limits (Range)	Alternative Equivalent Units						
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg		
Very High	≥ 100	14.2	36	864	0.000102	##########		
High	10-100	1.42	3.6	86.4	0.0000102	#########		
Moderately High	1.0-10	0.142	0.36	8.64	##########	##########		
Moderately Low	.1-1.0	0.0142	0.036	0.864	##############	##########		
Low	.011	0.00142	0.0036	0.0864	#########	***********		
Very Low	<.01							

	Amo	ozeme	ter Data	Sheet	-				
User(s):			Lonn	ie Norrod S	Soil Consult	ing			
Date:		3/30/2015	4-4-50	Permean	neter#:	独かを持て			
Location:	Marillo Coll	Enclave E		Air Temp	erature (F)	initial:			
Soil Survey Area/Special Project:		Sall In		Air Temp	erature (F)	final:	65		
Series or Map Unit Component:	CHANGES	Stiversville		Soil Mois	sture Conte	nt (%):	moist		
Pedon Number:	HERE ALVISOR	THE REAL PROPERTY.	TEUN MEA	1 If not kno	f not known, give a relative soil moisture content. i.e.				
Horizon Tested:		Bt2		dry, moist,					
Set-up Calculation		1							
Hole Depth (cm):	50.8	1	H =	² Actual v	vater level in	n hole (cm):	17.1		
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You want this value to be very close to 15 cm.			Initial:	17.1		
Desired Water Depth in Hole (cm):	-15		(Record to nearest millimeter.) Fig				17.1		
CHT Tube setting (cm) = d:	45.8		r = ³ Auger Hole Radius (Standard kit (6 cm) d				3		
Outflow Chamber (s) used: [Associated Conversion	n Factor:1		10)5.0		²) Set on 1 (La n ²) Set on 2 (B	rge Tank only)		
[Associated <u>Conversion</u>	ni <u>r</u> actor.j				I(-100.0 CII	ii) Set oii 2 (b	out rains)		
⁴Drop in Water	Outflow Chamber	Clock Time		ed Time readings)	Outflow (Q)	Hydraulic Co	enductivity (Ksat		
(cm)	(C.F.)	(hr:min)	(min):	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)		
Ex 4.9	20	10:17			392	0.4139	0.1629		
Start	I		XXX	XXXX	XXXX	XXXXX	XXXXXX		
7.50	105.0		30	0.500	1575.0	1.37279	0.54047		
4.60	105.0		19	0.317	1525.3	1.32944	0.52340		
5.10	105.0		20	0.333	1606.5	1.40025	0.55128		
					Mean K:	1.36749	0.53838		
				*5	St. Dev:	0.0357	0.0141		
					Hydraulic	Conductivity	Mod. High		

	Saturated Hydrauli Class							
Ksat Class	Limits (Range)	Alternative Equivalent Units						
(μm/s)		in/hr	cm/hr	cm/day	m/s	m°s/kg		
Very High	≥ 100	14.2	36	864	0.000102	#########		
High	10-100	1.42	3.6	86.4	0.0000102	############		
Moderately High	1.0-10	0.142	0.36	8.64	########	############		
Moderately Low	.1-1.0	0.0142	0.036	0.864	########	###########		
Low	.011	0.00142	0.0036	0.0864	##############	##########		
Very Low	<.01							

	Amo	ozemet	ter Data	Sheet			
User(s):	- 12 E TO U		Lonr	nie Norrod S	oil Consult	ing	
Date:	To be allowed	3/31/2015		Permeam	eter#:		
Location:	10 months	Enclave F		Air Tempe	erature (F)	initial:	
Soil Survey Area/Special Project:				Air Temp	erature (F)	final:	75
Series or Map Unit Component:	OT ITIES	Harpeth		¹ Soil Mois	ture Conte	nt (%):	moist
Pedon Number:	STATE OF THE STATE		Marian			elative soil moist	
Horizon Tested:	DEL PARTIE	Bt1		dry, moist,			
Set-up Calculation		1					
Hole Depth (cm):	50.8]	H =	² Actual w	ater level ir	hole (cm):	14.6
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You want this value to be very close to 15 cm.			Initial:	14.6
Desired Water Depth in Hole (cm):	-15		111111111111111111111111111111111111111			Final:	14.6
CHT Tube setting (cm) = d:	45.8		r = 3Auger Hole Radius (cm) Standard kit (6 cm) diam. aug				3
Outflow Chamber (s) used: [Associated <u>C</u> onversion	on <u>F</u> actor:]		10	05.0		²) Set on 1 (La n ²) Set on 2 (B	
⁴ Drop in Water	Outflow Chamber	Clock Time		ed Time n readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat
(cm)	(C.F.)	(hr:min)	(min)	: (min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)
Ex 4.9	20	10:17			392	0.4139	0.1629
Start	Ī		XXX	XXXX	XXXX	xxxxx	XXXXXX
2.60	105.0		20	0.333	819.0	0.89924	0.35403
2.60	105.0		20	0.333	819.0	0.89924	0.35403
2.60	105.0		20	0.333	819.0	0.89924	0.35403
	-		•		Mean K:	0.89924	0.35403
				*5	St. Dev:	0.0000	0.0000
				12 25	Hydraulic	Conductivity	Mod. High

Ksat Class	Class Limits (Range)	Alternative Equivalent Units						
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg		
Very High	≥ 100	14.2	36	864	0.000102	#########		
High	10-100	1.42	3.6	86.4	0.0000102	############		
Moderately High	1.0-10	0.142	0.36	8.64	########	###########		
Moderately Low	.1-1.0	0.0142	0.036	0.864	##########	############		
Low	.011	0.00142	0.0036	0.0864	##########	#############		
Very Low	<.01	i						

	Amo	ozemet	ter Data	a Sheet			
User(s):			Lonr	nie Norrod S	Soil Consult	ing	
Date:		3/31/2015		Permean	eter#:		The state of the s
Location:	TOTAL VERSION	Enclave G		Air Temp	erature (F)	initial:	TENER LE
Soil Survey Area/Special Project:				Air Temp	erature (F)	final:	75
Series or Map Unit Component:		Stiversville	0.000	Soil Mois	ture Conte	nt (%):	moist
Pedon Number:							ture content. i.e.
Horizon Tested:		Bt2		dry, moist,			
Set-up Calculation		1					
Hole Depth (cm):	50.8]	H =	² Actual w	ater level in	n hole (cm):	15.2
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You wan	nt this value t	Initial:	15.2	
Desired Water Depth in Hole (cm):	-15			o nearest mil	Final:	15.2	
CHT Tube setting (cm) = d:	45.8		r = ³ Auger Hole Radius (cm Standard kit (6 cm) diam				3
Outflow Chamber (s) used: [Associated <u>C</u> onversion	on <u>F</u> actor:]		10	05.0		²) Set on 1 (La n ²) Set on 2 (B	rge Tank only) oth Tanks)
⁴ Drop in Water	Outflow Chamber	Clock Time		ed Time n readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat
(cm)	(C.F.)	(hr:min)	(min)	: (min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)
Ex 4.9	20	10:17			392	0.4139	0.1629
Start			ХХХ	XXXX	XXXX	XXXXX	XXXXXX
1.10	105.0		15	0.250	462.0	0.47850	0.18839
1.10	105.0		15	0.250	462.0	0.47850	0.18839
0.70	105.0		9	0.150	490.0	0.50750	0.19980
					Mean K:	0.48816	0.19219
				*5	St. Dev:	0.0167	0.0066
					Hydraulic	Conductivity	Mod. High

	Saturated Hydrauli	c Conductiv	ity Class L	imits				
Ksat Class	Class Limits (Range)	Alternative Equivalent Units						
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg		
Very High	≥ 100	14.2	36	864	0.000102	##########		
High	10-100	1.42	3.6	86.4	0.0000102	#######################################		
Moderately High	1.0-10	0.142	0.36	8.64	#######################################	######################################		
Moderately Low	.1-1.0	0.0142	0.036	0.864	#######################################	#######################################		
Low	.011	0.00142	0.0036	0.0864	#########	******		
Very Low	<.01							

	Amo	ozemet	er Data	Sheet			
User(s):			Lonn	ie Norrod S	oil Consult	ing	Hall Street
Date:		3/31/2015		Permeam	eter #:		
Location:		Enclave H	US PERMIN	Air Temp	erature (F)	initial:	
Soil Survey Area/Special Project:				Air Temp	erature (F)	final:	80
Series or Map Unit Component:		Stiversville		¹ Soil Mois	ture Conte	nt (%):	moist
Pedon Number:	H COLORS	KO CAN	A 100 A				ure content. i.e.
Horizon Tested:		Bt1	dry, moist, or wet.				
Set-up Calculation		1					
Hole Depth (cm):	50.8		H =	² Actual w	ater level ir	n hole (cm):	15.2
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You want this value to be very close to 15 cm.			Initial:	15.2
Desired Water Depth in Hole (cm):	-15		(Record to nearest millimeter.) Final:				15.2
CHT Tube setting (cm) = d:	45.8		r = Standard kit (6 cm) diam. aug				3
Outflow Chamber (s) used: [Associated <u>C</u> onversion	on <u>F</u> actor:]		10	05.0		²) Set on 1 (La n ²) Set on 2 (B	rge Tank only) oth Tanks)
⁴ Drop in Water	Outflow Chamber	Clock Time		ed Time readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat
(cm)	(C.F.)	(hr:min)	(min):	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)
Ex 4.9	20	10:17			392	0.4139	0.1629
Start			XXX	XXXX	XXXX	XXXXX	XXXXXX
1.10	105.0		5	0.083	1386.0	1.43549	0.56516
1.10	105.0		5	0.083	1386.0	1.43549	0.56516
1.10	105.0		5	0.083	1386.0	1.43549	0.56516
					Mean K:	1.43549	0.56516
				*5	St. Dev:	0.0000	0.0000
				12000	Hydraulic	Conductivity	Mod. High

	Saturated Hydrauli	c Conductivi	ty Class L	imits				
Ksat Class	Class Limits (Range)	Alternative Equivalent Units						
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg		
Very High	≥ 100	14.2	36	864	0.000102	################		
High	10-100	1.42	3.6	86.4	0.0000102	######################################		
Moderately High	1.0-10	0.142	0.36	8.64	<i>########</i>	###########		
Moderately Low	.1-1.0	0.0142	0.036	0.864	######################################	#######################################		
Low	.011	0.00142	0.0036	0.0864	######################################	#############################		
Very Low	<.01							

	Amo	ozemet	er Data	Sheet			
User(s):			Lonn	ie Norrod S	oil Consult	ing	
Date:		3/31/2015		Permeam	eter#:		The state of
Location:		Enclave I		Air Tempe	erature (F) i	nitial:	ALTERNATION OF
Soil Survey Area/Special Project:				Air Temp	erature (F)	final:	80
Series or Map Unit Component:		Stiversville		¹ Soil Mois	ture Conte	nt (%):	moist
Pedon Number:							ure content. i.e.
Horizon Tested:		Bt1		dry, moist,			
Set-up Calculation		1					
Hole Depth (cm):	50.8		H =	² Actual w	ater level ir	hole (cm):	16.8
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You wan	Initial:	16.8		
Desired Water Depth in Hole (cm):	-15		(Record to	Final:	16.8		
CHT Tube setting (cm) = d:	45.8		r = Standard kit (6 cm) diam. auger				3
Outflow Chamber (s) used: [Associated <u>C</u> onversion	on <u>F</u> actor:]		10	05.0) Set on 1 (La n²) Set on 2 (B	rge Tank only) oth Tanks)
⁴ Drop in Water	Outflow Chamber	Clock Time		ed Time readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksa
(cm)	(C.F.)	(hr:min)	(min)	: (min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)
Ex 4.9	20	10:17			392	0.4139	0.1629
Start			XXX	XXXX	XXXX	XXXXX	XXXXXX
5.70	105.0		10	0.167	3591.0	3.21269	1.26484
11.00	105.0		20	0.333	3465.0	3.09997	1.22046
5.70	105.0		10	0.167	3591.0	3.21269	1.26484
					Mean K:	3.17512	1.25005
				*5	St. Dev:	0.0651	0.0256
				100	Hydraulic	Conductivity	Mod. High

	Saturated Hydrauli					not e	
Ksat Class	Class Limits (Range)	Alternative Equivalent Units					
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg	
Very High	≥ 100	14.2	36	864	0.000102	##########	
High	10-100	1.42	3.6	86.4	0.0000102	##########	
Moderately High	1.0-10	0.142	0.36	8.64	######################################	#########	
Moderately Low	.1-1.0	0.0142	0.036	0.864	######################################	#######################################	
Low	.011	0.00142	0.0036	0.0864	######################################	***********	
Very Low	<.01						

	Amo	ozemet	er Data	Sheet			
User(s):	1000		Lonn	nie Norrod S	oil Consult	ng	
Date:		3/31/2015		Permeam			
Location:	E THE STATE OF THE	Enclave J		Air Tempe	erature (F) i	nitial:	E-RY WEST
Soil Survey Area/Special Project:				Air Tempe	erature (F)	final:	75
Series or Map Unit Component:	19 THE ST	Armour		¹ Soil Mois	ture Conte	nt (%):	moist
Pedon Number:	District The						ture content. i.e.
Horizon Tested:	96 S	Bt2	ON WHAT	dry, moist,			
Set-up Calculation		1					
Hole Depth (cm):	50.8		H =	² Actual w	ater level ir	hole (cm):	14.9
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You want this value to be very close to 15 cm.			Initial:	14.9
Desired Water Depth in Hole (cm):	-15		(Record to nearest millimeter.) Final:				14.9
CHT Tube setting (cm) = d:	45.8		r = Standard kit (6 cm) diam. aug				3
Outflow Chamber (s) used: [Associated <u>C</u> onversion	on <u>F</u> actor:]		10	05.0		²) Set on 1 (La 1 ²) Set on 2 (B	rge Tank only) oth Tanks)
⁴Drop in Water	Outflow Chamber	Clock Time		ed Time n readings)	Outflow (Q)	Hydraulic Co	onductivity (Ksat
(cm)	(C.F.)	(hr:min)	(min)	: (min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)
Ex 4.9	20	10:17			392	0.4139	0.1629
Start	T		ххх	XXXX	XXXX	XXXXX	XXXXXXX
0.60	105.0		10	0.167	378.0	0.40299	0.15866
0.60	105.0		10	0.167	378.0	0.40299	0.15866
0.60	105.0		10	0.167	378.0	0.40299	0.15866
		-			Mean K:	0.40299	0.15866
				*5	St. Dev:	0.0000	0.0000
				1600	Hydraulic	Conductivity	Mod. High

Ksat Class	Class Limits (Range)	Alternative Equivalent Units						
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg		
Very High	≥ 100	14.2	36	864	0.000102	##########		
High	10-100	1.42	3.6	86.4	0.0000102	###########		
Moderately High	1.0-10	0.142	0.36	8.64	######################################	##########		
Moderately Low	.1-1.0	0.0142	0.036	0.864	######################################	##########		
Low	.011	0.00142	0.0036	0.0864	######################################	##########		
Very Low	<.01							

	Amo	ozemet	ter Data	Sheet					
User(s):	Mariet -		Lonr	nie Norrod S	Soil Consult	ing			
Date:	flexion at the	4/1/2015		Permean	eter#:				
Location:		Enclave K					Herrical Die		
Soil Survey Area/Special Project:				Air Temp	erature (F)	final:	68		
Series or Map Unit Component:		Stiversville		I ¹ Soil Mois	ture Conte	nt (%):	moist		
Pedon Number:				7.			ture content. i.e.		
Horizon Tested:		Bt1		dry, moist,	_				
Set-up Calculation		1							
Hole Depth (cm):	50.8		H =	² Actual w	rater level in	n hole (cm):	14.6		
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You want this value to be very close to 15 cm.			Initial:	14.6		
Desired Water Depth in Hole (cm):	-15		0.000	nearest mil	Final:	14.6			
CHT Tube setting (cm) = d:	45.8		r = ³ Auger Hole Rad Standard kit (6 cr			, ,	4.1		
Outflow Chamber (s) used: [Associated <u>C</u> onversion	on <u>F</u> actor:]		10	05.0		²) Set on 1 (La n ²) Set on 2 (B	rge Tank only) oth Tanks)		
⁴ Drop in Water	Outflow Chamber	Clock Time		ed Time readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat		
(cm)	(C.F.)	(hr:min)	(min)	: (min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)		
Ex 4.9	20	10:17			392	0.4139	0.1629		
Start			XXX	XXXX	XXXX	XXXXX	XXXXXXX		
1.70	105.0		11	0.183	973.6	0.89015	0.35045		
1.70	105.0		12	0.200	892.5	0.81597	0.32125		
1.80	105.0		12	0.200	945.0	0.86397	0.34014		
					Mean K:	0.85669	0.33728		
				*5	St. Dev:	0.0376	0.0148		
					Hydraulic	Conductivity	Mod. High		

Ksat Class	Class Limits (Range)	Alternative Equivalent Units					
(μm/s)	. ÷ ,4. · · · ·	in/hr	cm/hr	cm/day	m/s	m³s/kg	
Very High	≥ 100	14.2	36	864	0.000102	#########	
High	10-100	1.42	3.6	86.4	0.0000102	##########	
Moderately High	1.0-10	0.142	0.36	8.64	######################################	###########	
Moderately Low	.1-1.0	0.0142	0.036	0.864	#######################################	##########	
Low	.011	0.00142	0.0036	0.0864	#######################################	***********	
Very Low	<.01						

	Amo	ozemet	er Data	Sheet			
User(s):		- West	Lonni	e Norrod S	ioil Consulti	ing	
Date:	Course Section	4/1/2015		Permeam	eter#:		
Location:		Enclave L					
Soil Survey Area/Special Project:	REMINE AND			Air Tempe	erature (F)	final:	68
Series or Map Unit Component:	Ten Angel	Harpeth		1 Soil Mois	ture Conte	nt (%):	moist
Pedon Number:							ure content. i.e.
Horizon Tested:		B/A dry, moist					
Set-up Calculation		l .					
Hole Depth (cm):	50.8		H=	² Actual w	ater level ir	hole (cm):	16.2
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You want this value to be very close to 15 cm.			Initial:	16.2
Desired Water Depth in Hole (cm):	-15			nearest mil	limeter.)	Final:	16.2
CHT Tube setting (cm) = d:	45.8		r =		ole Radius (kit (6 cm) d	cm) iam. auger	4.1
Outflow Chamber (s) used: [Associated <u>C</u> onversion	on <u>F</u> actor:]		10	5.0		²) Set on 1 (La n ²) Set on 2 (B	rge Tank only) oth Tanks)
⁴ Drop in Water	Outflow Chamber	Clock Time		ed Time readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat)
(cm)	(C.F.)	(hr:min)	(min):	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)
Ex 4.9	20	10:17			392	0.4139	0.1629
Start	T T	1	XXX	XXXX	XXXX	XXXXX	XXXXXX
3.20	105.0		20	0.333	1008.0	0.79735	0.31392
1.60	105.0		10	0.167	1008.0	0.79735	0.31392
1.60	105.0		10	0.167	1008.0	0.79735	0.31392
					Mean K:	0.79735	0.31392
				*5	St. Dev:	0.0000	0.0000
				- Contract	Hydraulic	Conductivity	Mod. High

Ksat Class	Class Limits (Range)	Alternative Equivalent Units					
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg	
Very High High	≥ 100 10-100	14.2 1.42	36 3.6	864 86.4	0.000102 0.0000102	#######################################	
Moderately High	1.0-10	0.142	0.36	8.64	#########	##########	
Moderately Low	.1-1.0	0.0142	0.036	0.864	########	##########	
Low Very Low	.011 <.01	0.00142	0.0036	0.0864	#########	#########	

	Amo	ozemet	er Data	Sheet			
User(s):			Lonn	ie Norrod S	oil Consult	ing	
Date:		4/1/2015		Permeam	eter #:		新兴区公共
Location:		Enclave M	100				
Soil Survey Area/Special Project:	NOTE OF A		ATT SEED N	Air Tempe	erature (F)	final:	66
Series or Map Unit Component:		Stiversville		¹ Soil Mois	ture Conte	nt (%):	moist
Pedon Number:		30VC13VIIIC					ure content. i.e.
Horizon Tested:	A SYMME	Bt1		dry, moist,			
Set-up Calculation		1					
Hole Depth (cm):	50.8]	H=	H = 2 Actual water level in hole (cm): 15			
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You want this value to be very			Initial:	15.0
Desired Water Depth in Hole (cm):	-15			nearest mil	Final:	15.0	
CHT Tube setting (cm) = d:	45.8		r = ³ Auger Hole Radius Standard kit (6 cm)				3
Outflow Chamber (s) used: [Associated <u>C</u> onversion	on <u>F</u> actor:]		10)5.0	,	²) Set on 1 (La n ²) Set on 2 (B	rge Tank only) oth Tanks)
⁴Drop in Water	Outflow Chamber	Clock Time		ed Time readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat
(cm)	(C.F.)	(hr:min)	(min) :	(min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)
Ex 4.9	20	10:17			392	0.4139	0.1629
Start	Ĭ		XXX	XXXX	XXXX	XXXXX	XXXXXXX
0.30	105.0		5	0.083	378.0	0.39910	0.15713
0.80	105.0		14	0.233	360.0	0.38010	0.14964
0.80	105.0		14	0.233	360.0	0.38010	0.14964
				THURSDAY.	Mean K:	0.38643	0.15214
				*5	St. Dev:	0.0110	0.0043
				THE RESERVE OF	Hydraulic	Conductivity	Mod. High

Ksat Class	Class Limits (Range)	Alternative Equivalent Units						
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg		
Very High High	≥ 100 10-100	14.2 1.42	36 3.6	864 86.4	0.000102 0.0000102	######################################		
Moderately High Moderately Low	1.0-10 .1-1.0	0.142 0.0142	0.36 0.036	8.64 0.864	######################################	######################################		
Low Very Low	. 011 <.01	0.00142	0.0036	0.0864	*********	######################################		

	Amo	ozemet	er Data	Sheet			
User(s):	223.74		Lonr	nie Norrod S	Soil Consult	ing	1 Kartha Al
Date:		3/31/2015		Permeam	eter #:		
Location:	A STATE OF THE STA	Enclave N					
Soil Survey Area/Special Project:	STUVETSEN	The state of		Air Temp	erature (F)	final:	72
Series or Map Unit Component:	Estimates	Stiversville		¹ Soil Mois	ture Conte	nt (%):	moist
Pedon Number:							ure content. i.e.
Horizon Tested:		Bt1		dry, moist,			
Set-up Calculation		1					
Hole Depth (cm):	50.8	j	H =	² Actual w	ater level ir	n hole (cm):	16.5
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You wan	t this value to	o be very	Initial:	16.5
Desired Water Depth in Hole (cm):	-15			(Record to nearest millimeter.)			16.5
CHT Tube setting (cm) = d:	45.8]	r=	_	ole Radius (kit (6 cm) d	· ·	3
Outflow Chamber (s) used: [Associated <u>C</u> onversion	on <u>F</u> actor:]		1	05.0		²) Set on 1 (La n ²) Set on 2 (B	rge Tank only) oth Tanks)
⁴ Drop in Water	Outflow Chamber	Clock Time		ed Time n readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat
. (cm)	(C.F.)	(hr:min)	(min)	: (min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)
Ex 4.9	20	10:17					
Start			xxx	XXXX	XXXX	XXXXX	XXXXXX
1	105.0		4	0.067	1575.0	1.44691	0.56965
to a suprementation of the suprementation of	105.0		4	0.067	1575.0	1.44691	0.56965
1	105.0		4	0.067	1575.0	1.44691	0.56965
					Mean K:	1.44691	0.56965
				*5	St. Dev:	0	0
				15 C 5 7 C	Hydraulic	Conductivity	Mod. High

Ksat Class	Class Limits (Range)		Alternative Equivalent Units					
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg		
Very High	≥ 100	14.2	36	864	0.000102	##########		
High	10-100	1.42	3.6	86.4	0.0000102	##########		
Moderately High	1.0-10	0.142	0.36	8.64	#########	##########		
Moderately Low	.1-1.0	0.0142	0.036	0.864	#########	#######################################		
Low	.011	0.00142	0.0036	0.0864	#########	##########		
Very Low	<.01							

	Amo	ozemet	ter Data	Sheet				
User(s):	Variation in		Lonr	nie Norrod S	Soil Consult	ing	文書 画方 有い 一名	
Date:	The state of the	3/31/2015		Permeam	eter#:	CHART		
Location:		Enclave O	Same Bra				and the same	
Soil Survey Area/Special Project:	For Alexander			Air Temp	erature (F)	final:	66	
Series or Map Unit Component:		Armour		¹ Soil Mois	ture Conte	nt (%):	moist	
Pedon Number:	Report Labor	Mile Will	¹ If not known, give a relative soil moisture conte					
Horizon Tested:		Bt2		dry, moist,				
Set-up Calculation		1						
Hole Depth (cm):	50.8		H =	² Actual w	ater level in	n hole (cm):	16.5	
Distance from Bottom of Bubble Tube to soil surface (cm) = D:	10		² You wan	t this value to	be very	Initial:	16.5	
Desired Water Depth in Hole (cm):	-15			o nearest mil	limeter.)	Final:	16.5	
CHT Tube setting (cm) = d:	45.8		r =	³ Auger Ho Standard	(cm) liam. auger	3		
Outflow Chamber (s) used:			4	05.0	(=20.0 cm	2) Set on 1 (La	rge Tank only)	
[Associated C onversion	on <u>Factor:]</u>			05.0	(=105.0 cm	n ²) Set on 2 (B	oth Tanks)	
⁴Drop in Water	Outflow Chamber	Clock Time		ed Time n readings)	Outflow (Q)	Hydraulic Co	nductivity (Ksat	
(cm)	(C.F.)	(hr:min)	(min)	: (min/60)	(cm ³ /hr)	(cm/hr)	(in/hr)	
Ex 4.9	20	10:17		T	392	0.4139	0.1629	
Start			XXX	XXXX	XXXX	XXXXX	XXXXXX	
1.90	105.0		10	0.167	1197.0	1.09965	0.43293	
1.50	105.0		8	0.133	1181.3	1.08518	0.42724	
3.00	105.0		16	0.267	1181.3	1.08518	0.42724	
				THE RES	Mean K:	1.09001	0.42914	
				*5	St. Dev:	0.0084	0.0033	
					Hydraulic	Conductivity	Mod. High	

Ksat Class	Class Limits (Range)					
(μm/s)		in/hr	cm/hr	cm/day	m/s	m³s/kg
Very High	≥ 100	14.2	36	864	0.000102	##########
High	10-100	1.42	3.6	86.4	0.0000102	**********
Moderately High	1.0-10	0.142	0.36	8.64	#######################################	###########
Moderately Low	.1-1.0	0.0142	0.036	0.864	#######################################	###############
Low	.011	0.00142	0.0036	0.0864	##############	***********
Very Low	<.01	1				

APPENDIX 3.4 RESULTS OF CHEMISTRY TESTING

2101 Calhoun Rd. Hwy 81 Owensboro, KY 42301 (270) 685-4039 FAX (270) 685-3989

"Improving Growth... With Science"

Soil Analysis

LONNIE NORROD SOIL CONSULTING

Grower:

LONNIE NORROD

Received: 04/01/2015

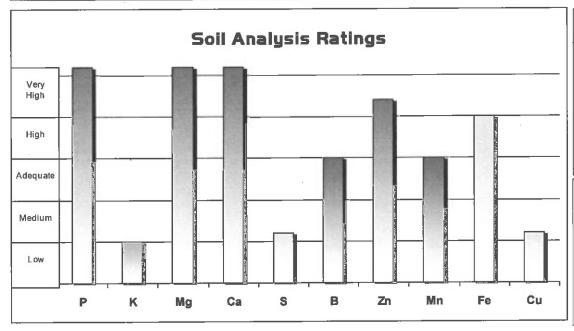
Farm ID:

Processed: 04/03/2015

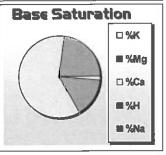
277 RED WILLIAMS ROAD

Sample ID:

LOCATION A 0-4"


Account #: 66277

CROSSVILLE, TN 38571


Lab Results Ibs per Acre

Target pH: 6.5

ab Numb	er: 1814	39WO			ibs. per							
P Phosphorus	K	Mg Magnesium	Ca	Soil pH	Buffer pH	Suffur	Boron	Zn Zinc	Mn Manganese	F€ Iron	Cu	
348 VH	107 L	395 VH	2522 VH	6.5	7.70	26 M	2.0 A	15.8 VH	179 A	375 H	1.7 M	
Aluminum	Sedium	Nitrata N	Soluble Salts	Organic Matter 2.46 %	ENR 49.2	Molybdenum	NH4	Nickel	BiCarbs			
			mmhos/cm			ppm		ppm	meq/l			

Cation Exchange Capacity	10.5 mea/100g
Base !	Saturation
K:	1.3 %
Mg:	15.7 %
Ca:	60.1 %
H:	22.9 %
Na:	%

Fertility Recommendations

Crop: NO CROP

ibs. per Acre

Yi∈ld:

Ume	Gypsum	N	P205	K20	Mg	S	B	Zn	Mn	Fe	Cu
Tons/Acre	Tons/Acre	Nitrogen	Phosphate	Potash	Magnesium	Sulfur	Boron	Zinc	Manganese	tron	
		ETE/E		*							

Comments:

2101 Calhoun Rd. Hwy 81 Owensboro, KY 42301 (270) 685-4039 FAX (270) 685-3989

"Improving Growth... With Science"

Soil Analysis

LONNIE NORROD SOIL CONSULTING

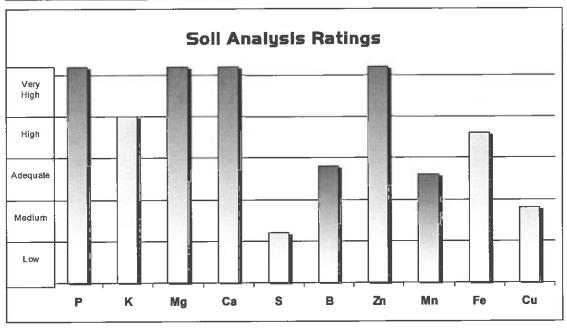
LONNIE NORROD Groш€г:

Received: 04/01/2015

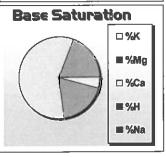
Farm ID:

Processed: 04/03/2015

277 RED WILLIAMS ROAD CROSSVILLE, TN 38571


LOCATION C 0-4" Sample ID:

Account #: 66277


Lab Results ibs. per Acre

Target pH: 6.5

Lab Numb	er: 1814	38WO			ibs. per	Acre			Test	Method:	Mehlich III
Phosphorus	K Potassium	Mg Magnesium	Ca	Soil pH	Buffer pH	5 Sulfur	B	Zn Zinc	Mn Manganese	F€ Iron	Cu
494 VH	412 H	556 VH	2892 VH	6.6	7.70	28 M	1.9 A	26.4 VH	131 A	309 H	2.6 M
Aluminum	Sodium	Nitrate N	Soluble Saits	Organic Matter 3.23 %	€NR 64.6	Molybdenum	N#14	Nickel	BiCarbs meq/l		

Cation Exchange Capacity	12.5 meq/100g
Base :	Saturation
K:	4.2 %
Mg:	18.6 %
Ca:	58.0 %
H	19.2 %
Na:	%

Fertility Recommendations

Crop: NO CROP

Ibs. per Acre

Yield:

Ume Tons/Acre	Gupsum Tons/Acre	N Nitrogen	P205 Phosphete	K20 Potash	Mg Magnesium	S Sulfur	B Boron	Zn zinc	Mn Manganese	F€ Iron	Copper
				*							

Comments:

210i Calhoun Rd. Hwy 8I Owensboro, KY 4230I (270) 685-4039 FAX (270) 685-3989

"Improving Growth... With Science"

Soil Analysis

LONNIE NORROD SOIL CONSULTING

Grower:

LONNIE NORROD

Received: 04/01/2015

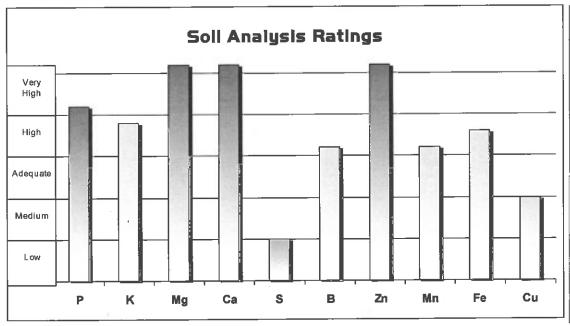
Farm ID:

Processed: 04/03/2015

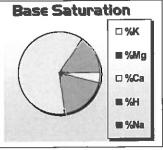
277 RED WILLIAMS ROAD CROSSVILLE, TN 38571

Sample ID:

LOCATION D 0-4"


Account #: 66277

Lab Number: 181437WO


Lab Results

Target pH: 6.5
Test Method: Mehlich III

Phosphorus	K	Mg Magnesium	Ca Calcium	Soil pH	Buffer pH	5 Sulfur	Boron	Zn Zinc	Mn Manganese	FE Iron	Cu
211 VH	400 H	590 VH	3206 VH	6.8	7.75	23 L	2.1 H	21.2 VH	227 H	292 H	2.8 M
Aluminum	Sodium	Nitrate N	Soluble Salts	Organic Matter 2.83 %	ENR 56.6	Molybdenum	NH4	Nickel	BiCarbs meg/l		

Cation Exchange Capacity	13.0 meq/100g
Base :	Saturation .
K:	3.9 %
Mg:	18.9 %
Ca:	61.7 %
H:	15.4 %
Na:	%

Fertility Recommendations

Crop: NO CROP

Ibs. per Acre

Yi€ld:

Ume Tons/Acre	Gypsum Tons/Acre	FY	P205 Phosphate	K20 Potash	Mg Magnesium	Sulfur	Boron	Zn Znc	Min Manganese	F€ tron	Cu
				*							

Comments:

2101 Calhoun Rd. Hwy 81 Owensboro, KY 42301 (270) 685-4039 FAX (270) 685-3989

"Improving Growth... With Science"

Soil Analysis

LONNIE NORROD SOIL CONSULTING

Groш€r:

LONNIE NORROD

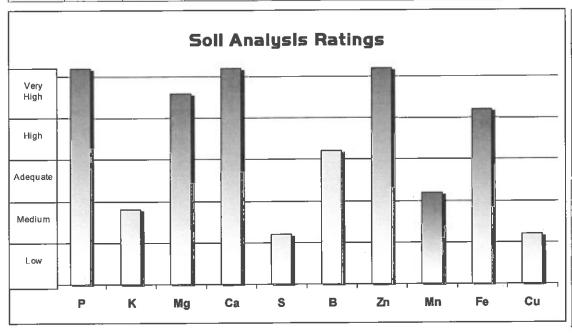
Received: 04/01/2015

Farm ID:

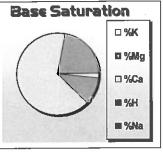
Processed: 04/03/2015

Sample ID:

LOCATION F 0-4"


Account #: 66277

277 RED WILLIAMS ROAD CROSSVILLE, TN 38571


Lab Results

Target pH: 6.5

Lab Numb	ab Number: 181445WO				Ibs. per Acre				Test Method: Mehlich II					
P Phosphorus	K	Mg Magnesium	Calcium	Soil pH	Buffer pH	S Sulfur	Boron	Zn Zinc	Mn Manganese	FE Iron	Cu Copper			
621 VH	198 M	375 VH	3824 VH	6.5	7.60	28 M	2.1 H	18.8 VH	61 A	415 VH	1.7 M			
Aluminum	Sodium	Nitrate N	Soluble Salts	Organic Matter 2.91 %	ENR 58.2	Molybdenum	NH4	Nichal	BlCarbs					
			mmhos/cm			ppm		ppm	meq/l					

Cation Exchange Capacity	14.6 meq/100g
Base :	Saturation
K:	1.7 %
Mg:	10.7 %
Ca:	65.6 %
H:	22.0 %
Na:	%

Fertility Recommendations

Crop: NO CROP

Ibs. per Acre

Yl∈ld:

Ume Tons/Acre	Gypsum Tons/Acre	N Nitrogen	P205 Phosphate	K20 Potash	Mg Magnesium	S Sulfur	Boron	Zn	Mn Manganese	F€ tron	Cu
				*							

Comments:

2101 Calhoun Rd. Hwy 81 Owensboro, KY 42301 (270) 685-4039 FAX (270) 685-3989

"Improving Growth... With Science"

Soil Analysis

LONNIE NORROD SOIL CONSULTING

Grower:

LONNIE NORROD

Received: 04/01/2015

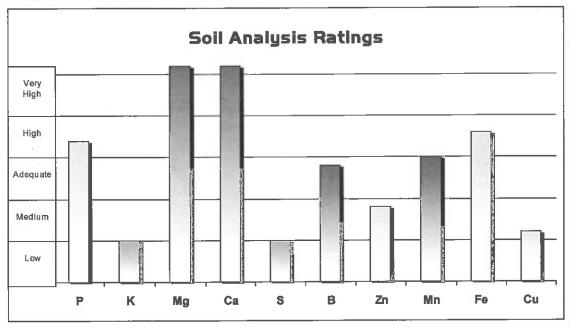
Farm ID:

Processed: 04/03/2015

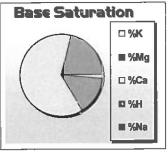
277 RED WILLIAMS ROAD

CROSSVILLE, TN 38571

Sample ID:


LOCATION G 0-4"

Account #: 66277


Lab Results Ibs. per Acre

Target pH: 6.5

Lab Numb	€ Г: 1814	41WO			Ibs. per			Test Method: Mehlich III					
Phosphorus	K	Mg Megnesium	Ca	Soil pH	Buffer pH	S Sulfur	Boron	Zn Zinc	Mn Manganese	F€ Iron	Cu		
162 H	115 L	419 VH	2839 VH	6.5	7.70	23 L	1.8 A	5.6 M	198 A	285 H	1.8 M		
Aluminum	Sodium	Nitrate N	Soluble Salts	Organic Matter 2.4 %	enr 48	Molybdenum	NH4	Nickel ppm	BiCarbs meq/l				

Cation Exchange Capacity	11.4	meq/100g
Base :	Saturati	on
K:	1.3	%
Mg:	15.3	%
Ca:	62.3	%
H:	21.1	%
Na:		%

Fertility Recommendations

Crop: NO CROP

Ibs. Der Acre

Yl∈ld:

Lime Tons/Acre	Gypsum Tons/Acre	N Nitrogen	P205 Phosphate	K20 Potash	Mg Magnesium	5 Sulfur	Boron	Zn Zinc	Mn Manganese	F€ iron	Cu
			*	*							

Comments:

2101 Calhoun Rd. Hwy 81 Owensboro, KY 42301 (270) 685-4039 FAX (270) 685-3989

Soil Analysis

"Improving Growth... With Science"

LONNIE NORROD SOIL CONSULTING

Grower:

LONNIE NORROD

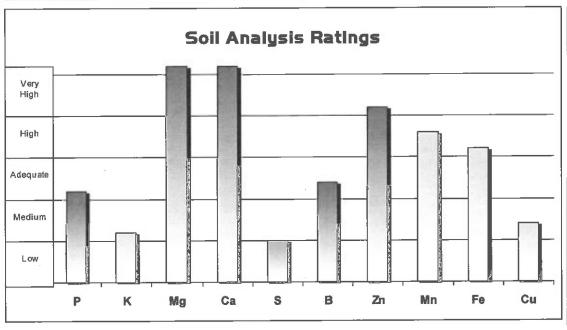
Received: 04/01/2015

Farm ID:

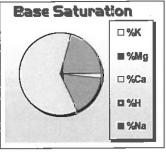
Processed: 04/03/2015

277 RED WILLIAMS ROAD

LOCATION I 0-4" Sample ID:


Account #: 66277

CROSSVILLE, TN 38571


Lab Results Ibs. per Acre

Target pH: 6.5 Test Method: Mehlich III

Lab Numb	Er: 1814	40WO			ibs. per			Test Method: Mehlich III				
P Phosphorus	K	Mg Magnesium	Calcium	Soil pH	Buffer pH	S Sulfur	Boron	Zn Zinc	Mn Manganese	F€ Iron	Cu	
106 A	145 M	464 VH	2796 VH	7.0	7.70	25 L	1.6 A	14.2 VH	317 H	202 H	2.0 M	
Aluminum	Sodium	Nitrata N	Soluble Saits	Organic Metter 2.33 %	enr 46.6	Molybdenum	NH4	Nickel	BlCarbs meq/l			

Cation Exchange Capacity	11.5	meq/IOOg
Base :	5aturati	on
K:	1.6	%
Mg:	16.8	%
Ca:	60.7	%
H:	20.9	%
Na:		%

Fertility Recommendations

Crop: NO CROP

Ibs. per Acre

Yield:

Ume Tons/Acre	Gupsum Tons/Acre	N Nitrogen	P205 Phosphate	K20 Potash	Mg Magnesium	Sulfur	Boron	Zn Zinc	Mn Manganese	F∈ Iron	Copper
			*	*							

Comments:

2101 Calhoun Rd. Hwy 81 Owensboro, KY 42301 (270) 685-4039 FAX (270) 685-3989

Soil Analysis

"Improving Growth... With Science"

LONNIE NORROD SOIL CONSULTING

Groш€г:

LONNIE NORROD

Received: 04/01/2015

Farm ID:

Processed: 04/03/2015

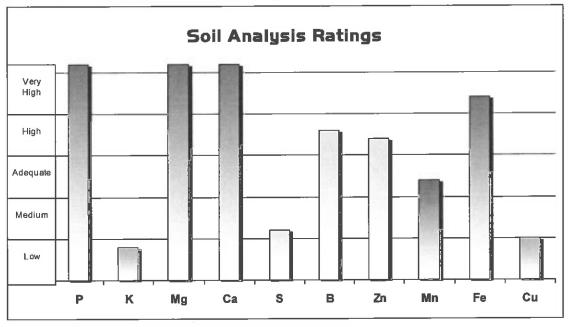
277 RED WILLIAMS ROAD CROSSVILLE, TN 38571

Sample ID:

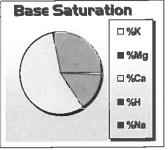
LOCATION J 0-4"

Account #: 66277

Lab Number: 181442WO


Lab Results

Target pH: 6.5


Ibs. per Acre

Test Method: Mehlich III

P Phosphorus 393 VH	K Potassium 92 L	Mg Magnesium 458 VH	Ca Calcium 2912 VH	Soil pH	Buffer pH 7.55	S sulfur 26 M	B Boron 2.3 H	Zn Zinc	Mn Manganese 116 A	F€ iron 474 VH	Cu Copper 1.3 L
Aluminum	Sodium	Nitrate N	Soluble Salts	Organic Matter 2.61 %	€NR 52.2	Molybdanum	NH4	Nicisel	BiCarbs meq/l		

Cation Exchange Capacity	12.9 meq/100g
Base :	Saturation
K:	0.9 %
Mg:	14.8 %
Ca:	56.4 %
H:	27.9 %
Na:	%

Fertility Recommendations

Crop: NO CROP

Ibs. per Acre

Yield:

Ume Tons/Acre	Gypsum Tons/Acre	N Nitrogen	P205 Phosphate	K20 Potash	Mg Magnesium	S Sulfur	B Boron	Zn Zinc	Mn Manganese	FE Iron	Copper
0.0				*							

Comments:

2101 Calhoun Rd. Hwy 81 Owensboro, KY 42301 (270) 685-4039 FAX (270) 685-3989

Soil Analysis

"Improving Growth... With Science"

LONNIE NORROD SOIL CONSULTING

Grower: L

LONNIE NORROD

Received: 04/01/2015

Farm ID:

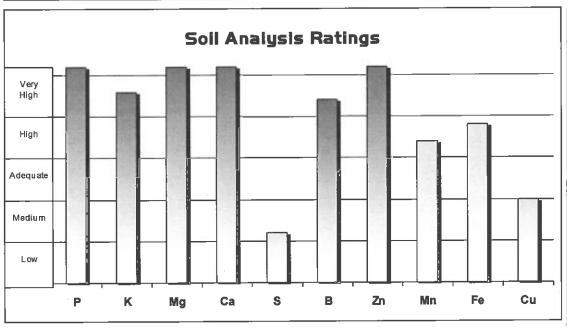
arm ID:

Processed: 04/03/2015

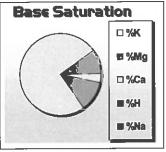
277 RED WILLIAMS ROAD CROSSVILLE, TN 38571 Sampl∈ ID:

LOCATION K 0-4"

Account #: 66277


Lab Numb∈r: 181444WO

Lab Results


Target pH: 6.5

Test Method: Mehlich III

P Phosphorus	K Potassium	Mg Magnesium	Ca	Soil pH	Buffer pH	5 Sulfur	Boron	Zn zinc	Mn Manganese	FE Iron	Cu
424 VH	547 VH	582 VH	6200 VH	7.3	7.75	30 M	2.9 VH	26.1 VH	272 H	346 H	2.9 M
Aluminum	Sodium	Nitrate N	Soluble Salts	Organic Matter 3.86 %	ENR 77.2	Molybdenum	NH4	Nicisal	BiCarbs		
			mmhos/cm			ppm		ppm	meq/l		3 19-12

Cation Exchange Capacity	20.6 meg/100g
Base S	Saturation
K:	3.4 %
Mg:	11.8 %
Ca:	75.1 %
H:	9.7 %
Na:	%

Fertility Recommendations

Crop: NO CROP

Ibs. per Acre

Yi∈ld:

Ume Tons/Acre	Gypsum Tons/Acre	P205 Phosphate	K20 Potash	Mg Megnesium	Sulfur	Boron	Zn Zinc	Mn Menganese	Fe Iron	Cu

Comments:

2101 Calhoun Rd. Hwy 8! Owensboro, KY 42301 (270) 685-4039 FAX (270) 685-3989

"Improving Growth... With Science"

Soil Analysis

LONNIE NORROD SOIL CONSULTING

LONNIE NORROD Grower:

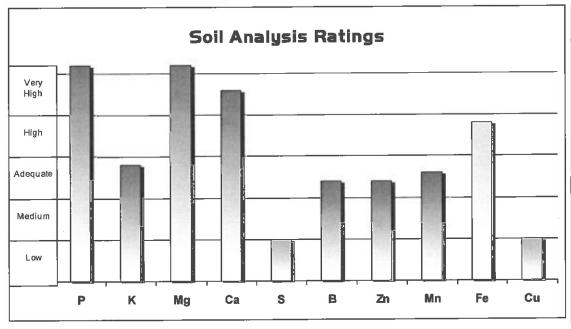
Received: 04/01/2015

Farm ID:

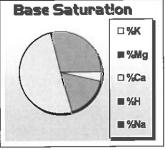
Processed: 04/03/2015

277 RED WILLIAMS ROAD

LOCATION L 0-4" Sample ID:


Account #: 66277

CROSSVILLE, TN 38571


Lab Results Ibs. per Acre

Target pH: 6.5

Lab Number: 181443WO				ibs. per Acre				Test Method: Mehlich III			
K	Mg Magnesium	Calcium	Soil pH	Buffer pH	5 Sulfur	Boron	Zn Zinc	Mn Manganese	F€ Iron	Cu	
304 A	454 VH	2272 VH	6.2	7.60	25 L	1.7 A	7.5 A	135 A	359 H	1.3 L	
Sodium	Nitrate N	Soluble Salts	Organic Matter 2.32 %	ENR 46.4	Molybdenum	NH4	Nickel	BiCarbs meg/			
	K Potassium 304 A	K Mg Potesssium Magnesium 304 A 454 VH	K Mg Ca Potassium Magnesium Calcium 304 A 454 VH 2272 VH Sodium Nitrate N Soluble Salts	K Mg Ca Soil pH 304 A 454 VH 2272 VH 6.2 Sodium Nitrata N Soluble Salts Organic Matter 2.32 %	Nitrata N Soluble Salts Caganic Matter Calc. Calc.	Nitrate N Soluble Salts Organic Matter ENR Molybdenum 2.32 % 46.4	Nitrate N Soluble Salts Caganic Matter Can Calcium Calcium Can Calcium Cal	Nitrate N Soluble Salts Caganic Matter 2.32 % 46.4 Soluble Salts Caganic Matter Canal Molubdenum NH4 Nickel Nicke	Nitrate N Soluble Salts Organic Matter 2.32 % 46.4 Soluble Salts Test Test	K Mg Ca Soil pH Buffer pH Sulfur Beron Zn Mn FE 304 A 454 VH 2272 VH 6.2 7.60 25 L 1.7 A 7.5 A 135 A 359 H Sodium Nitrate N Soluble Salts Organic Matter 2.32 % 46.4 Molybdenum NH4 Nickel BiCarbs	

Cation Exchange Capacity	11.2 meq/100g
Base S	Saturation
K:	3.5 %
Mg	16.9 %
Ca:	50.9 %
H:	28.7 %
Na:	%

Fertility Recommendations

Crop: NO CROP

lbs. per Acre

Yield:

Ume Tons/Acre	Gypsum Tons/Acre	P205 Phosphate	K20 Potash	Mg Magnesium	S Sulfur	B Beren	Zn Zinc	Mn Manganese	F€ Iron	Copper
1.0			*							

Comments:

Waters Agricultural Laboratories, Inc. 2101 Calhoun Road – Owensboro, KY 42301 phone: (270) 685-4039 – fax: (270) 685-3989 – email: kyinfo@watersag.com

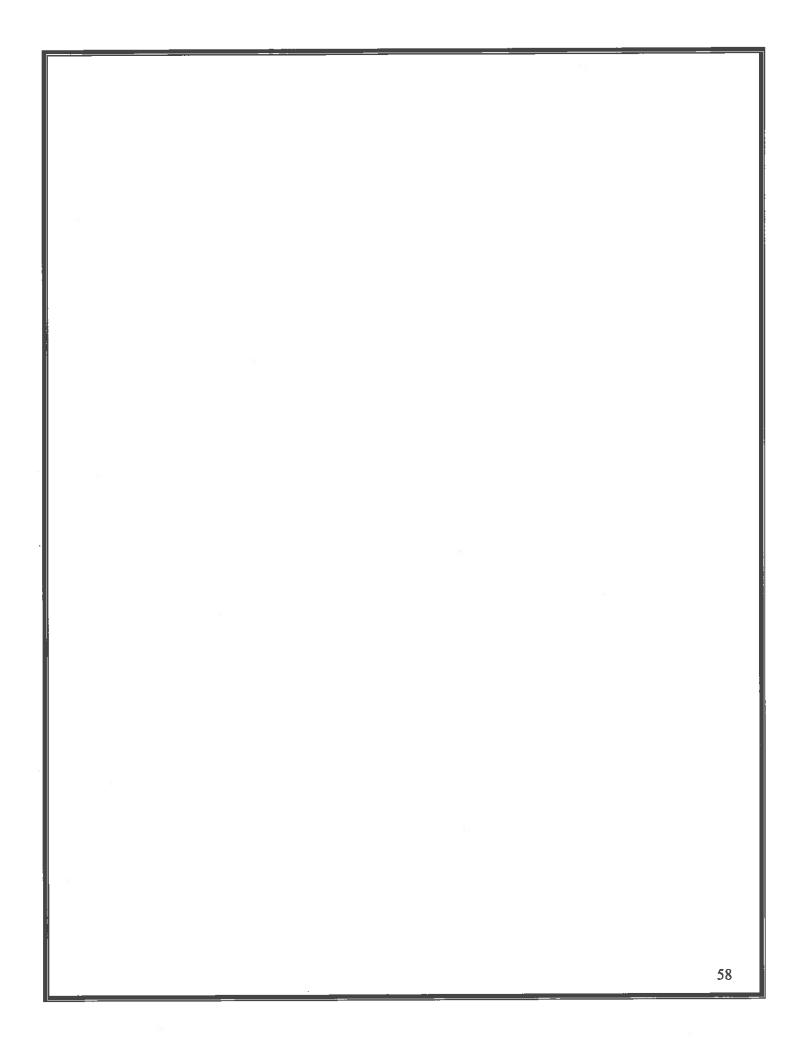
Ship To: Lonnie Norrod Soil (277 Red Williams Ro Crossville, TN 3857	d .			ort Date: il 2, 2015	
Grower/Client:	Lonnie Norrod	Soil Consulting			
Farm/Field:					
Sampling Date:		Test Me	thod:	Proprie	tary
Extraction Date:	04/01/2015	Lab Nur	nber(s):	1362XX	, 1364XX, 1366XX
Sample Description:	Soil Samples				, 1370XX, 1372XX , 1376XX, 1378XX
			NOO		NIII (none)
Sample ID	Lab #	Sample Depth 6" – 12"		(ppm)	NH4 (ppm)
Location 1 Nitrate	1362XX	6 – 12		.06	Not Requested
Location 2 Nitrate	1364XX	6" – 12"	4	.68	Not Requested
Location 3 Nitrate	1366XX	6" – 12"	3	.56	Not Requested
Location 4 Nitrate	1368XX	6" – 12"	3	.22	Not Requested
Location 5 Nitrate	1370XX	6" – 12"	4	.54	Not Requested
Location 6 Nitrate	1372XX	6" – 12"	3	.55	Not Requested
Location 7 Nitrate	1374XX	6" – 12"	5	.45	Not Requested
Location 8 Nitrate	1376XX	6" – 12"	6	.63	Not Requested
Location 9 Nitrate	1378XX	6" – 12"	5	5.78	Not Requested

This document may be reproduced only in its entirety. As we have no control over the matter in which the sample was taken, the analysis is based solely on the sample received. Our liability is limited to the sample received and for the fee assessed on same.

2101 Calhoun Road - Hwy. 81 Owensboro, Kentucky 42301 270-685-4039 phone / 270-685-3989 fax

LONNIE NORROD SOIL CONSULTING	
277 RED WILLIAMS RD	
CROSSVILLE, TN 38571	
	277 RED WILLIAMS RD

Grower: LONNIE NORROD SOIL CONSULTING


Date Received: April 1, 2015 Date of Report: April 6, 2015

Sample Number	Lab Number	Soil Type	% Silt + % Clay	% Sand	% Clay	% Silt
Location 1	1363x	Clay Loam	67.8	32.2	29.8	38
Location 2	1365x	Loam	60.6	39.4	27.8	32.8
Location 3	1367x	Clay Loam	66.2	33.8	28.6	37.6
Location 4	1369x	Loam	72.2	27.8	26.6	45.6
Location 5	1371x	Silty Clay Loam	81	19	33.4	47.6
Location 6	1373x	Clay Loam	57	43	29.4	27.6
Location 7	1375x	Clay Loam	77	23	36.6	40.4
Location 8	1377x	Silty Clay Loam	86.6	13.4	33.8	52.8
Location 9	1379x	Sandy Clay Loam	53	47	27	26

This document may be reproduced only in its entirety. As we have no control over the matter in which the sample was taken, the analysis is based solely on the sample received. Our liability is limited to the sample received and for the fee assessed on same.

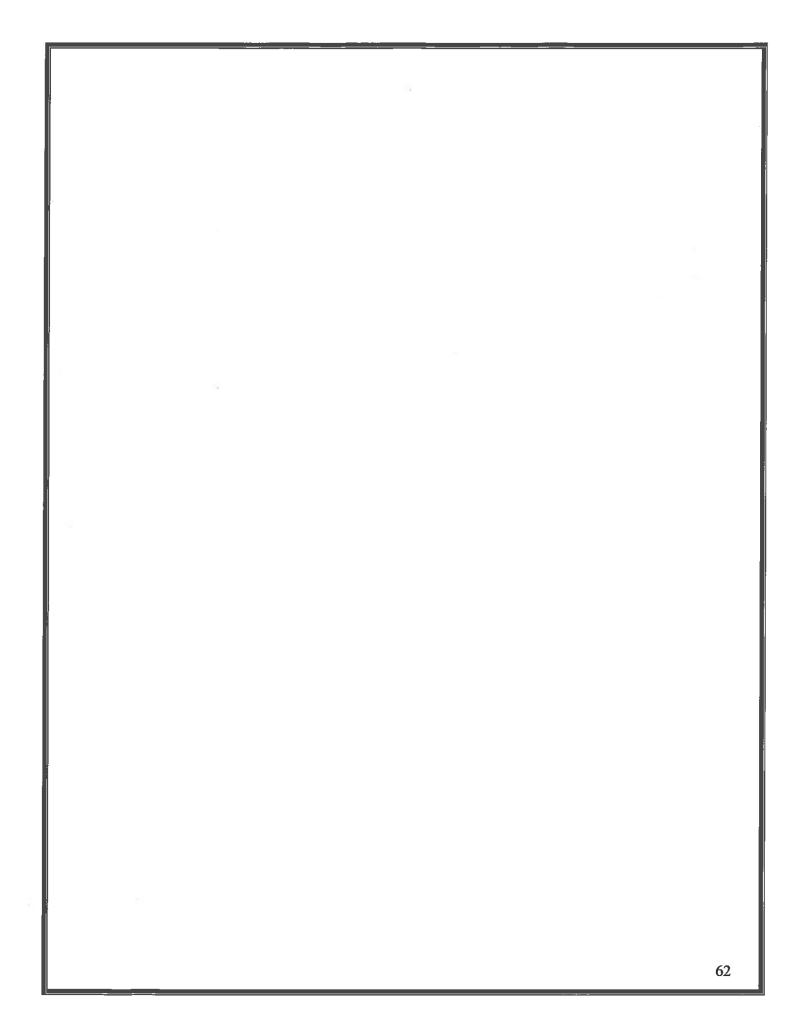
11. The back-up wastewater disposal sites shall be identified and shown in the DDR. All proposed uses for the back-up sites shall be described in the DDR.

See plan for soil reserve areas.

12. Cost Estimate

12.1 Engineered opinion of construction cost attached below

		î .			
TEM NO.	DESCRIPTION	UNIT	Estimated Quantity	unit price	amount
<u> </u>	Mobilization	LS	1	\$5,000.00	\$5,000.
2	Construction Surveying	LS	1	\$2,500.00	\$2,500.
3	185'x55' Recirculating Sand Filter and all pertinent apparatuses	EA	1	\$250,000.00	\$250,000.
4	Drip Dispersal Emitter Tubing + installation	LF	123,750	\$0.72	\$89,100.
5	2" Zone Supply Header + Installation	LF	1545	\$17.28	\$26,697.
6	2" Zone Return Header + installation	LF .	1470	\$17.28	\$25,401.
7	2" Zone Supply Line + installation	LF	670	.\$9.50	\$6,365.
8	2" Zone Return Line + installation	LF	1090	\$9.50	\$10,355.
9	2" Solenoid Valves, boxes, wiring,& labor (Drip Field)	EA	28	\$864.00	\$24,192.
10	Flushing Zone Valves, boxes, wiring,& labor (Drip Field)	EA	28	\$486.00	\$13,608.
11	Stone for Meter Boxes	LS	1	\$3,435.00	\$3,435.
12	48" Drip Zorie Line Markers w/ Labels + installation	EA	28	\$81.00	\$2,268.
13	Ultra Violet Disinfection Building with all pertinent apparatuses	EA	1	\$45,000.00	\$45,000
14	5,000 Gallon Recirculating Tank with all pertinent apparatuses	EA	1	\$15,000.00	\$15,000
15	3,000 Gallon Final Dose Tank with all pertinent apparatuses	EA	1	\$10,000.00	\$10,000
16	Embankment / Final Grading (RSF)	LS	1	\$3,435.00	\$3,435
17	Asphalt Pavement Access Drive	SY	350	\$19.40	\$6,790.
18	Galvanized 6' Chain link fence with angled barbed wire	LF	3540	\$19.44	\$68,817.
19	Wood Fence 3-rail	LF	800,00	\$16.00	\$12,800
19	7' gate access (72 inch chain link fence)	EA	3	\$540.00	\$1,620
20	Silt Fence	LF	600	\$5.00	\$3,000
21	Seed and Straw Disturbed Areas	acre	2 _	\$35.00	\$70.
22	Flush Chambers	each	50	\$125.00	\$6,250
23	Storage Pond	CY	5,500	\$4.00	\$22,000
			Total		\$653,704
			İ		
lote:					
EC, Inc. has no control over the cost of labor, ma mished by others, or over the Contractor(s) metro ompetitive bidding or market conditions. SEC, In the made on the basis of our experience and qualified ur best judgement as an experienced and qualified	od of determining prices, or over c.'s opininons of Probable Cost ications and represent d professional engineering firm,				
unillar with the construction industry. SEC, Inc. of nat proposals, bids or actual project costs will not cost prepared by SEC, Inc. If prior to the Bidding	vary from Opinions of Probable				


12.2 Not applicable

12.3 Not applicable

13. If auxiliary sites are anticipated beyond the primary dedicated disposal site, these sites or disposal options must be presented for review.
Beneficial reuse opportunities with treated wastewater will be considered on a case by case basis

Not applicable

Staging or Phasing of Construction 14. Not applicable

ı	Appendix
	••
ł	
ı	
i	
ŀ	
ľ	
ı	
ı	
ļ	
İ	
ŀ	
j	
	63

